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Fig. 1. In our paper, we explore how implicit input can be used to support image generation processes that classically just use text
prompts (A). We discuss what information can be extracted using implicit input and how it can be integrated into image generation
processes. Our investigation focuses on (B) gaze behavior and (C) keystroke dynamics.

Users of Generative Artificial Intelligence models often struggle to generate a desired image due to difficulties in expressing complex
visual concepts. Current approaches to solving this problem, like adding conditional control, require users to give explicit input, which
can be tedious. This paper explores how implicit input can be used to support image generation processes. We focus on two exemplary
implicit input modalities: gaze behavior and keystroke dynamics. In a preliminary evaluation, we investigated the correlation between
gaze behavior and user annotations, showing that users looked longer at areas they wanted to regenerate. Further, we assessed what
information can be extracted from keystroke dynamics to be used as an additional input for image generation models.

CCS Concepts: • Human-centered computing → Empirical studies in HCI.
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1 Introduction

Generative Artificial Intelligence (GenAI) empowers users to effortlessly produce sophisticated outputs, such as images,
from basic inputs, often textual descriptions. By that, users can create images without requiring advanced skills in
image editing [23]. Models like Stable Diffusion [7] or FLUX [15] have risen in popularity due to their applications
across various fields such as entertainment, advertising, and art [2]. These models primarily leverage natural language
input but face ongoing challenges related to the ambiguity of text. Despite the advancements of the models, errors,
particularly those resulting from misinterpretation and ambiguous prompts, continue to occur [29]. Additionally, users
often initially lack a complete vision of the outcome and, instead, iteratively refine the image. Therefore, current
one-shot generation methods may fail to produce the intended results, leaving user goals unmet [33]. Due to this, there
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is a growing need for supplementary methods allowing users to express intent beyond textual descriptions to maintain
control over the generative process [18].

There are two main strategies to enhance user control and the quality of output generated by these models. The first
involves additional conditioning beyond text, such as reference images. Reference images assist users in conveying
visual ideas since they carry implicit attributes that are difficult to articulate through text alone [33]. Yet, this still does
not solve the problem of users not knowing what they want to generate initially, leading to an iterative exploration and
refinement through numerous generation cycles [11]. The second strategy, generative inpainting, focuses on speeding
up the iterative refinement by enabling users to regenerate sections of the output while retaining others selectively [32].
This involves marking regions for revision using mouse and text input [17]. Although both strategies rely mainly on
explicit input from users, this requirement can be tedious and places an additional cognitive load on users, who must
decide what changes are necessary [21].

Implicit input provides an alternative approach by intuitively detecting users’ intentions through their behaviors,
eliminating the need for explicit specification [26]. Doing so can significantly streamline interactions and potentially
enhance the user experience within GenAI systems. However, challenges remain in accurately interpreting these
behavioral patterns and integrating them effectively into the image generation process.

This paper explores the potential of implicit input to enhance image generation processes by focusing on two
exemplary modalities: gaze behavior and keystroke dynamics. Our preliminary evaluation of gaze behavior reveals a
correlation between gaze behavior and user annotations, demonstrating that users tend to fixate longer on areas they
want to regenerate. This insight suggests that gaze behavior can be effectively used to implicitly communicate user
intent during image generation. Additionally, we investigate the potential of keystroke dynamics to serve as an alternate
input mechanism, offering information that can further refine image generation models. By using these implicit inputs,
users can communicate their intentions more naturally and seamlessly, potentially enhancing both the efficiency and
the user experience of image generation systems. This approach offers insights for reducing the need for explicit input,
thus streamlining the interaction process and reduce cognitive load.

2 Gaze Behavior for Inpainting

In a preliminary evaluation, we investigated the potential of using gaze behavior to enhance image generation processes.
Gaze behavior is usually captured using eye-tracking devices with cameras to measure corneal reflections, enabling
the calculation of gaze points on screens or in virtual environments [4]. Gaze points can be used explicitly, such as
controlling a mouse for individuals with motor impairments or operating drawing applications [6, 10]. However, this
can be challenging due to the difficulty of consciously controlling gaze [12]. Alternatively, eye tracking can serve as an
implicit input modality, where gaze behavior is passively analyzed to adapt UI content or trigger functions without
active user control [1, 5, 35]. This includes predicting user intentions for assistive robots, automating image cropping,
or manipulating images based on gaze saliency [9, 13, 28].

Previous investigations regarding the gaze behavior for Artificial Intelligence (AI)-generated images have demon-
strated that gaze is a crucial indicator in determining whether images are AI-generated [3]. Moreover, prior research
has confirmed that user intentions can be inferred from gaze patterns [1]. However, to effectively utilize this knowledge
to improve AI-generated images, it is essential first to evaluate the connection between users’ gaze behaviors and their
intentions to change or preserve generated images.

Thus, in our preliminary user study, we aim to address the following research question: What can users’ gaze behavior
tell us about generated images and the users’ intentions to preserve or change the content?
GenAICHI: CHI 2025 Workshop on Generative AI and HCI 2
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We assume that users’ gaze focuses on specific regions that should either be regenerated or remain unchanged,
supported by earlier studies linking gaze behavior with user intentions [22]. We hypothesize that users fixate on
areas they wish to regenerate due to an implicit negative bias towards AI-generated images, particularly when certain
parts appear unnatural [8, 34]. Additionally, users tend to search implicitly for irregularities in AI-generated images,
maintaining their focus on these inconsistencies [3].

To evaluate our hypothesis, we conducted a preliminary within-subject lab study with 16 participants (median age
27). Participants used a custom Python-based UI to view 768 × 768-pixel images and annotate areas to keep or regenerate
marked in green and red, respectively. For image generation, we used the Stable Diffusion XL-Turbo [25] network. Gaze
behavior was tracked at 250 Hz using an EyeLogic LogicOne1 eye tracker, which filtered out blinks.

We extracted the fixations from our gaze data using a velocity-based algorithm and overlapped the fixation area
with the annotated areas. We calculated an Aligned Rank Transform (ART) [30] before continuing with analysis of
variance (ANOVA) and post-hoc paired t-tests with Bonferroni-Holm correction. The ANOVA test revealed a significant
effect of annotation type on the region of interest (ROI)s, 𝐹 (2, 45) = 8.467, 𝑝 < 0.001, 𝜂2𝑝 = 0.273. The posthoc tests
showed that users looked significantly more on the regenerate area (𝑀 = 0.235, 𝑆𝐷 = 0.072) compared to the keep
area (𝑀 = 0.133, 𝑆𝐷 = 0.077), 𝑡 (15) = 4.73, 𝑝 < 0.001,𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 = 1.18, and the area that was not annotated (𝑀 = 0.15,
𝑆𝐷 = 0.068), 𝑡 (15) = 5.86, 𝑝 < 0.001,𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 = 1.47. Qualitative feedback indicated that participants particularly
fixated on image elements perceived as unnatural, such as human figures or iconic scenarios with irregular geometries.
Thus, our results confirm our hypothesis.

These results align with previous studies showing that users tend to fixate more on the noise present in images [24].
We theorize that this attention to noise can also extend to flaws in images, whether generated or natural, making users
focus on these specific areas. Furthermore, we propose that users inherently notice imperfections in images, even
without immediately discerning the specific anomalies [3].

3 Keystroke Dynamics Features for Image Generation

A second modality besides gaze behavior that can provide implicit information is keystroke dynamics. Keystroke
dynamics focuses on analyzing features like typing speed and dwell times, i.e., the time between consecutive keys for
example to identify and authenticate users [20]. Additionally, current research has shown that information like the
demographics or emotions of users can be successfully extracted from keystroke dynamics [14, 31].

For demographic prediction, keystroke dynamics can provide information about a user’s characteristics, such as
gender and age. These insights are derived from several features: typing speed and rhythm variations, dwell time
and flight time, and specific typing patterns involving punctuation and function keys that may correlate with gender
and language proficiency. Additionally, the frequency of typing errors and correction methods can further provide
demographic information [16].

Emotion prediction using keystroke dynamics also presents promising potential for customizing GenAI outputs.
Emotional states can manifest as changes in typing speed and rhythm, impacting the variability of typing patterns.
Although pressure data is typically gathered from specialized keyboards, it can be inferred from dwell and flight time
variations, offering insights into different emotional states. Typing errors and pauses often increase with negative
emotions or cognitive stress, providing additional emotional cues. Research has demonstrated that various emotions,

1EyeLogic. LogicOne. https://www.eyelogicsolutions.com/logicone/ (last visited on April 26, 2025)
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such as fear, are more recognizable due to distinctive typing patterns, and machine learning models can achieve
classification accuracies exceeding 90% for certain emotions[19].

In the context of image generation, leveraging keystroke dynamics for demographic and emotion prediction allows
for creating more personalized and relevant outputs. For instance, understanding a user’s emotional state can guide the
generation of visuals that either reflect or counterbalance those emotions, enhancing user engagement and potentially
reducing negative emotions by generating content to trigger positive emotions. Additionally, recognizing demographic
information enables the tailoring of image content to resonate culturally or contextually with users, improving user
experience. However, there is also a risk of reinforcing biases of GenAI models by integrating information about the
demographics of the users [27]. Thus, the integration has to be designed carefully to prevent this.

Although challenges remain, particularly in achieving consistent predictions across diverse populations, the integra-
tion of keystroke dynamics into generative AI showcases significant potential for advancing interactive and adaptive
systems. Ongoing research will be essential in refining these models and expanding their applicability to broader
contexts and user demographics.

4 Conclusion

In conclusion, this paper has explored the potential of implicit input modalities, specifically gaze behavior and keystroke
dynamics, to enhance image generation processes within image generation systems. Our findings highlight that users’
gaze behavior can effectively identify areas that should be regenerated, which can be useful for image inpainting.
Similarly, keystroke dynamics provide meaningful data related to user demographics and emotional states, which can
be leveraged to personalize and refine generative outputs.

While our preliminary evaluations demonstrate the feasibility of integrating these implicit inputs, challenges remain
in optimizing their accuracy and effectiveness. Technical limitations in current eye-tracking and keystroke analysis
technologies, as well as the complexities of accurately interpreting behavioral data, pose significant challenges. However,
as these technologies evolve, they seem promising for reducing reliance on explicit user input, thereby streamlining
interactions and minimizing cognitive load.

Future research could focus on expanding the scope of implicit input modalities, including the integration of other
physiological signals like respiration rate or EEG, to further enrich user interaction with image generation systems.
Additionally, exploring multimodal approaches that combine various implicit cues could lead to more robust and
intuitive generative processes. Ultimately, using implicit input has the potential to transform how users engage with
AI-driven creative tools, making the experience more natural, efficient, and responsive to individual needs.
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