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Abstract
Generative AI, particularly Large Language Model (LLM)-based
conversational agents (CAs), presents emerging privacy risks, espe-
cially for younger users. Children and adolescents, who are more
vulnerable to online risk-taking, may struggle to recognize and
mitigate these risks, leading to excessive personal data disclosures.
This workshop paper explores privacy issues in LLM-based CAs,
drawing on existing research to highlight the unique vulnerabilities
of younger users. Given the challenges younger users face in assess-
ing these risks, we emphasize the need for AI systems that balance
privacy protection with user autonomy. We discuss design consid-
erations, including clearer privacy policies, adaptive content filters,
and educational safeguards, to ensure safer interactions without
overly restricting user engagement.

CCS Concepts
• Human-centered computing → Empirical studies in HCI; •
Security and privacy → User studies in security and privacy.

Keywords
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1 Introduction
Generative Artificial Intelligence (AI) encompasses machine learn-
ing models capable of producing original content—including text,
images, music, video, and code—by identifying and replicating pat-
terns from previously analyzed data [2]. The rapid progress in this
field has led to its integration into mainstream consumer appli-
cations, particularly in conversational agents (CAs) powered by
Large Language Models (LLMs) (e.g., [24, 36, 37, 43]). These systems
enable functionalities such as text-to-speech, as seen in CAs like
OpenAI’s ChatGPT [5, 34, 38]. Thereby, disclosing private and sen-
sitive information in LLM-based CAs can expose users to a range
of emerging privacy and security risks [12, 42, 54, 62] which are
partly novel and partly amplify existing online privacy risk [30].

Among all user groups, children, and adolescents are more prone
to taking risks online [22] and may struggle to assess dangerous sit-
uations including the ones emerging from AI use. This makes them
more susceptible to being misled and to underestimate the long-
term consequences of their actions in the digital world compared
to adults [9, 48].

In this workshop paper, we explore relevant research on pri-
vacy issues in LLM-based CAs and outline their impact on younger
user groups. We emphasize the importance of designing CAs that

mitigate privacy risks while ensuring that even less risk-aware
users can engage autonomously. Our discussion aims to promote a
balanced approach to CA design — one that protects user privacy
without being overly restrictive or paternalistic. Rather than im-
posing strict controls that limit user autonomy, the goal should be
to develop systems that provide meaningful privacy protections
while allowing users, especially those less aware of privacy risks,
to engage freely and make informed decisions.

2 Background on User Privacy Risks in
LLM-Based Conversational Agents

Based on Solove´s established privacy taxonomy [46], we outline
privacy risks for data collection, processing as well as disseminating
and provide background on current technical privacy measures.

Privacy issues in data collection. In digital environments,
personal data collection through cookies and metadata is often
viewed negatively due to inadequate privacy notices [1, 21]. The
rise of AI further obscures data collection, reducing transparency
around user consent [21]. Specifically, LLMs rely on vast amounts of
personal data for training, further intensifying surveillance risks by
expanding data collection [31]. Moreover, the anthropomorphizing
of dialogue-based LLM applications poses particular risks of privacy
violations due to users’ tendency to overshare [54]. Studies show
that users may overestimate LLMs’ capabilities, perceiving them as
human-like and disclosing more information than intended [31, 39,
54]. Users are also more likely to share personal details with helpful,
human-like chatbots and accept privacy intrusions [23, 40, 52]. Even
when aware the chatbot is not human, its human-like traits and lack
of social judgment encourage oversharing, which can be exploited
for harmful purposes like promoting addictive content [40, 54].

Privacy issues in data processing. This vast amount of data
collected is often not only stored on the service providers’ databases
but processed and reused for machine learning purposes and shared
with third parties [31, 53]. In the context of AI, including LLMs, pri-
vacy violations can occur during data processing [31, 54]. Based on
the data captured, specific data points may be linked and combined
to identify individuals, leading to inferences about their personality,
social characteristics, and emotional attributes. LLMs, for example,
can enhance the accuracy of predictions about sensitive traits such
as sexual orientation, gender, or religious beliefs [54]. This capabil-
ity may lead to the creation of detailed profiles that include true
and sensitive information without the individual’s knowledge or
consent. Without users’ consent, their data risks being repurposed
for objectives beyond the original intent [31]. End-users are often-
times neither informed nor given control over how their data is
utilized, including its inclusion in training datasets. This way of
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handling personal information leaves it exposed to potential leaks
and unauthorized access.

Privacy issues in data dissemination. The dissemination
of sensitive information from LLM-trained data poses significant
risks [32, 54]. For instance, GPT-2 has unintentionally disclosed
personal information, like phone numbers and email addresses,
from its training data [13]. Similarly, GPT-3-based Co-pilot exposed
sensitive API keys, potentially allowing unauthorized database ac-
cess [27]. Beyond sharing genuine sensitive data, LLM also risks
spreading false or misleading content [54]. Additionally, LLMs and
text-to-image (TTI) models present copyright and cybersecurity
concerns [10, 54]. LLMs may generate content that, while not di-
rectly violating copyright, exploits original creators’ ideas [10].
This is particularly evident in TTI models, like DALL-E, which can
mimic specific artists’ styles, and potentially be engineered to ex-
ploit certain images for financial benefit [10, 47]. Both technologies
also pose cybersecurity threats, such as generating personalized
phishing emails or convincing visuals for scams [10, 54].

Privacy safeguards in LLM.Much research has been dedicated
to protecting user privacy in LLM usage, leading to the development
of various frameworks and methods. For example, pre-processing
techniques filter or replace sensitive information, such as personal
identifiers (e.g., names, addresses), before it reaches the model [25].
Differential privacy adds noise to data or model updates, preventing
the model from memorizing and leaking specific user data while
maintaining overall performance [45]. Federated learning further
enhances privacy by training models in a decentralized manner,
minimizing data exposure by keeping information local [65]. Be-
yond LLM models themselves, limited research has explored how
users, and in particular underage, interact and respond to privacy
issues with CA based on LLM [61, 63].

3 Children and Adolescents as Vulnerable User
Groups for LLM-based Conversational Agents

Existing research on children and adolescents’ interactions with
generative AI has predominantly focused on educational appli-
cations, often aiming to foster creativity and understanding of
machine learning processes (e.g., [3, 4, 35]). However, ethical con-
siderations and potential risks associated with generative AI remain
significantly underexplored, particularly for underage user groups
(e.g., [26, 60, 61]). While studies on children’s engagement with
AI-driven technologies are scarce, research on related digital in-
teractions suggests that children struggle to understand the full
extent of privacy risks. For example, Zhao et al. [64] examined
children’s privacy reactions to online in-app games and found that
while younger children (ages 6–10) could identify overt threats like
inappropriate content or oversharing of personal information, they
had difficulty recognizing more subtle risks such as implicit data
collection through tracking and in-app recommendations. When
using state-of-the-art LLM-based CAs, it is reasonable to expect
that children may face similar, if not heightened, challenges in
identifying and mitigating privacy risks.

What supports concerns of heightened privacy risks for minors
is research on chatbot interactions demonstrating that children and
adolescents’s perceptions of CAs can significantly influence their
disclosure behaviour. Indeed, Pérez-Marín and Pascual-Nieto [41]

found that minors aged 11–14 responded to chatbots differently
based on their perceived personalities and moods, often exhibit-
ing increased self-disclosure when the chatbot displayed emotions.
Importantly, children tended to anthropomorphize these conversa-
tional agents, treating them as human-like friends rather than digi-
tal tools. This perceived humanness not only strengthened prosocial
behaviours but also led children to share personal information more
readily. Although this study did not examine AI-powered chatbots,
it underscores the tendency of children to form social connections
with CAs, which may amplify privacy risks when interacting with
more advanced LLM-driven systems [41]. LLM-based CAs exhibit
even more human-like interactions and encourage free-form inter-
actions that can elicit personal disclosures [23, 40, 52, 54] leading
to an increase in both traditional privacy risks and novel concerns
related to AI’s data memorization capabilities.

Personal information can be collected not only explicitly but also
implicitly through subtle conversational cues [29]. This presents
another significant challenge to user awareness, particularly for
minors, who may not fully comprehend how their data is being
captured and processed [20]. Indeed, a 2021 international study by
[United Nations Children’s Fund (UNICEF)] found that adolescents
generally had low awareness of AI-related risks. While only a few
study participants demonstrated a clear awareness of the dangers,
the majority either had naïve mental models of (potentially risky)
data flows or lacked awareness altogether [51].

From a legal perspective, persons are considered children up to
the age of 16 (e.g., [11, 17, 18]). Taking the GDPR as an example
[17], under Article 8, online services including LLM-based CAs AI
must obtain verifiable parental consent before collecting personal
data from children under 16 (or 13 in Norway, Spain, Sweden, and
the United Kingdom). This ensures that minors do not unknow-
ingly share sensitive information without oversight. Furthermore,
transparency is another key aspect of GDPR compliance. Article
12 requires AI chatbot providers to present clear, child-friendly
explanations regarding data collection and processing. While these
are the legal rules, practically this does not entirely prevent the
usage of CAs by teenagers as many AI-powered chatbot providers
(e.g., [14, 19, 38]) can be subscribed to through an email account.
The service provider asks for the birthdate but one may argue that
this can easily be faked. Furthermore, the majority of these popular
chat services provide an untailored privacy policy for all service
users which is further characterized by long and partly complicated
texts, not prominently displayed in the user interface.

While the legal protection spans up until 16, from a developmen-
tal perspective persons from age 10 to 19 can already be considered
adolescents [55] and people in this age group are characterized by
being highly social and more prone to risk-taking than younger
children [49]. This means, that teenagers often underestimate their
ability to avoid risk while simultaneously engaging in more risky
behaviours - also online [8, 58] - due to their tendency to under-
estimate the risks themselves [15]. This further highlights that
children and especially adolescents are very vulnerable to privacy
risks when interacting with LLM-based chatbots.
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4 Call to Action for Potential Mitigation
Approaches

While adolescents seek independence as part of the individuation
process from their parents, they are still less capable than adults to
manage online - including AI- risks without some level of guidance
[8, 58]. However, some degree of risk-taking and autonomy-seeking
is a natural and essential aspect of adolescence [7]. Thus, restricting
these experiences may hinder developmental growth, as teens rely
on them to gradually separate from their parents and develop into
well-adjusted, independent adults [8, 49, 50]. There is therefore a
need for a "safe space" for adolescents enabling both privacy self-
regulation and sufficient parental control [56]. This aligns with
Value Sensitive Design (VSD) [6], which suggests shifting from
restrictive parental control towards collaborative safety mecha-
nisms that balance parental oversight with adolescent autonomy.
Currently, a wide array of parental safety controls exists, but they
prioritize authoritarian restriction and privacy-invasive monitor-
ing by parents [56, 57]. These approaches not only risk damaging
parent-teen trust but also fail to account for the dynamic and un-
predictable nature of generative AI [60, 61], which make output
monitoring difficult. Moreover, defining appropriate content for
teenagers remains a challenge, as they are not a homogeneous group
[61]. Even more so, there seems to be a disparity between parents’
assumptions about AI usage and the reality of adolescents’ engage-
ment with these technologies [61]. While parents tend to focus on
mainstream tools like ChatGPT, teens are increasingly drawn to
character-based chatbots on social media platforms, which may blur
the line between AI companionship and human-like relationships
[14, 43, 61].

This raises an important question: what are teens using chatbots
for, and is this usage beneficial or problematic?While somemay use
them for harmless exploration or self-expression, research suggests
that excessive chatbot interaction can lead to problematic usage
patterns, including increased privacy disclosure and even emotional
dependence [33, 59–61]. A particularly alarming case involved a
teenagerwho tragically took his own life after developing an intense
relationship with a chatbot [44]. While preventing such incidents
is paramount, it is crucial to consider whether privacy-preserving
designs and structured emotional regulation tools [6] could have
helped mitigate such risks. More effective age-restricting technolo-
gies, such as platforms with strict age verification and promotion
of shared safety settings such as parental alerts and risk ratings,
offer one potential solution [6]. However, this leads to challenges of
their own, including the sufficient preservation of the minor users‘
privacy with respect to the legal guardian in control of the safety
settings and potentially the provider of the Generative AI system
too. The ideal approach would allow teenagers to explore indepen-
dently while enabling parental intervention solely when needed.
With these features, parents could rely on alerts or risk-ranking
rather than direct content access, while in more dangerous cases
AI-generated outputs remain reviewable for refining risk detection
[61]. However, such approaches and details of potential solutions
for privacy in LLM-based chatbots need further exploration and
research.

Similarly, age-appropriate privacy policies must be provided -
an issue not only related to LLM-based CAs. Lengthy and complex

traditional legal warnings are often unsuitable for younger audi-
ences; instead, risk communication strategies should incorporate
visual storytelling, interactive guidance, and contextual nudges to
promote safer online behaviors [16, 28]. Finally, research [6] also
suggests that chatbots themselves could integrate real-time feed-
back mechanisms that encourage responsible disclosure behaviors
while preserving a user’s sense of autonomy. How to design those
mechanisms is another very interesting avenue for future research.
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