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Fig. 1. The implementation of a proactive chat assistant for programming.We introduce a proactive assistant that takes in
the programmer’s context, which includes the current code, user message history, and optionally terminal output, generates a set
of suggestions, which include a summary, implementation, and explanation of implementation, and then determines whether it is
timely to show the user in the interactive interface.

CCS Concepts: • Human-centered computing → User studies; • Software and its engineering → Collaboration in software
development.
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1 Introduction

Chat-based AI assistants such as ChatGPT [8] or Claude [1], enable people to accomplish some of their tasks via
prompting: the user crafts a message with sufficient context about their task and then receives an AI response, they
continue iterating this process until they’re satisfied with the result. Interacting with these assistants requires two
points of effort from the human: first porting over the workspace context, e.g., copying the document or code file, and
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Fig. 2. A walkthrough of the proactive assistant interface for coding. (A) Overview of suggestions, consisting of a short
description, implementation, and a brief explanation; (B) Preview the implementation in their code, accept a suggestion to ask
follow-up questions on, or delete the suggestion; (C) Integrating a suggestion into the editor via a diff format, where users can decide
if they want to accept or hide the changes; (D) Invoking suggestions, where users can also request suggestions from the assistant.

second describing the task in natural language. Assuming the assistant had access to the working context of the user, a
natural question is whether it could infer the task they want to solve. If the assistant can reliably provide suggestions
relevant to the user’s task, then it might be advantageous for it to generate suggestions automatically. The assistant
would now be proactive and result in a mixed-initiative interaction [5]. In this paper, we attempt to design effective
proactive chat-based assistants powered by large language models (LLMs) for programming.

Virtual assistants have been explored in many commercial products including Apple Siri and Amazon Alexa [6]; in fact,
one of the most well-known and first proactive virtual assistants is Microsoft’s Office Assistant, with the English version
commonly referred to as Clippy. The Office Assistant would proactively offer its assistance based on inference of the user
actions in their Word document. While the user experience with Clippy was less than ideal [3], more recent examples
of proactive assistants in the form of autocompletion for text-based tasks have been more successful. For instance,
GitHub Copilot [4] provides in-line code suggestions with LLMs. Copilot has been well received by programmers and
randomized studies have shown increases in programmer productivity [9, 10]. However, autocomplete-based proactive
assistance only considers local suggestions based on the user’s cursor position. In contrast, a chat-based proactive
assistant could suggest modifying the entire code or pointing out bugs in earlier parts of the code, in addition to being
able to complete the code. Moreover, the particular design details of a proactive assistant are crucial to its effectiveness.

2 Proactive Assistant Implementation

In this paper, we build a proactive assistant for programming tasks. When embedding the proactive assistant into the
user’s work context, which is the programmer’s IDE in this setting, the proactive assistant will have access to the
current code in any of the user’s files, the terminal outputs, and prior user queries to the AI assistant.
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Interactive Interface. The interface of the proactive assistant, shown in Figure 2, is built into the standard chat
interface, allowing programmers to use all normal chat functionality, while the assistant periodically provides suggestions
to programmers. The proactive assistant facilitates efficient evaluation of the suggestion by providing a summary
to allow users to quickly get an idea of whether or not the suggestion is relevant. The summary consists of a single
sentence that starts with the type of the suggestion e.g., a bug fix, a new feature, and then a description of the suggestion.
If the summary of the suggestion seems relevant to the user, they can expand the suggestion for more details as shown
in Figure 2 (A). Depending on the type of suggestion, they may receive a code snippet and/or a text description (e.g., a
suggestion that explains a code snippet may not include code).

The proactive assistant also has a “preview” functionality, which will allow users to see how the assistant would
incorporate it into their code. The suggested implementation is computed via another call to the LLM, where it is given
the proactive suggestion and the user’s code and produces a new code that incorporates the suggestion, as shown in
Figure 2 (C). The user has the option to accept or revert all changes and can additionally only a subset of the changes
and edit freely before clicking on the “accept changes” button. Since the proactive assistant is a part of the chat interface,
we create the option for users to add a proactive suggestion to the chat history (via the “accept” button) or remove it
(via the “delete” button). Clicking on the accept button shown in Figure 2 (B) would add the expanded suggestion to the
chat message in a way that looks visually similar to the rest of the user’s messages.

Suggestion Content. To identify the different types of suggestions that users benefit from for coding contexts, we
look to DevGPT [11], a dataset of conversations between programmers and ChatGPT, as a source of real-world questions.
We identify eight categories of questions that proactive assistants can help with: explaining existing code, brainstorming

new ideas or functionality, completing unfinished code, providing pointers to syntax hints or external documentation,
identifying and fixing bugs (which include both latent and runtime errors), adding unit tests, and improving code efficiency

and modularity. Annotations were roughly distributed across all categories where each appeared 15%, 19%, 18%, 13%,
10%, 9%, 6%, 10% of the time respectively—note that since this dataset consists of only ChatGPT conversations and may
not represent the actual distribution of user questions in practice.

Timing of Suggestions. The proactive assistant must display suggestions at the appropriate time so they are not
obstructive and distracting to users. We propose the following conditions for when proactive suggestions should be
shown to users based on an estimation of when the user is in acceleration or exploration mode [2] . Additionally, we
allow the proactive suggestion to be shown during debugging when users are trying to edit the current code for any
bugs or improve the performance.

3 Study Design

We recruited a total of 65 students with diverse programming experience and levels of regular AI usage. Our study
compares proactive assistants to a non-proactive chat-based assistant baseline.

Experimental Conditions. In the Suggest and Preview condition, the participant interacts with the proactive
assistant described in Section 2. In the Suggest condition, the participant interacts with the proactive assistant described
in Section 2, without the preview feature. Finally, in the Persistent Suggest condition, the participant interacts with
a variant of Suggest condition, but with a reduced amount of time that an assistant waits to provide a suggestion (from
20 seconds to 5 seconds) and increase in the number of suggestions shown (from 3 to 5). We fix the LLM backbone
across all conditions to be GPT-4o [8], a state-of-the-art LLM.

Procedure. The study was conducted online and asynchronously at the participant’s own time. The interface we used
to deploy the study is an extension of the open-source platform RealHumanEval introduced in [7]. Before participating
GenAICHI: CHI 2025 Workshop on Generative AI and HCI 3
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Fig. 3. Percentage of sub-tasks completed correctly. Comparing baseline chat to proactive assistants across the four tasks,
where Task 1 and Task 2 are system-building questions and Task 3 and 4 are ones where participants work with new packages and
functionality. We report average performance and standard error. While performance varied by task, we observed that all variants of
proactive assistants tended to increase the number of test cases passed compared to the baseline chat assistant across the board.

in the study, each participant filled out a consent form. The study has been approved by our institution’s review board
(IRB). We adopt a between-subject setup to compare the three proactive chat variants and a within-subjects setup to
compare each proactive variant to the non-proactive baseline. This means each participant will interact with both a
proactive assistant and the baseline chat condition. We randomize the order in which participants interact with either a
proactive assistant or the baseline chat assistant. The total amount of time the participant spent coding for the study
was 40 minutes, with participants spending 20 minutes in each condition.

4 Results

Proactive Assistants Generally Improve User Productivity.We find that on average participants with proactive
assistants are more productive with a baseline chat assistant: we observe a 12.1% ± 5.1%, 18% ± 5.8%, and 11.6% ± 5.0%
increase in the percentage of test cases passed for Suggest and Preview, Suggest, and Persistent Suggest

respectively compared to baseline. Figure 3 provides a more granular view by task. We find that the improvements
in the number of test cases are significant across all proactive variants, where 𝑝 = 0.01 for Suggest and Preview,
𝑝 = 0.002 for Suggest: 𝑝 = 0.002, and 𝑝 = 0.02 for Persistent Suggest.

User Experience with Proactive Assistants Varies by Implementation. While we observe generally uniform
benefits of proactive assistants across the different conditions in terms of user productivity, we see more variation in
terms of user experience across the conditions. We measure whether participants preferred the proactive assistant
over the baseline non-proactive assistant. We find that the vast majority of participants prefer the proactive variant
over the baseline for both the Suggest and Suggest and Preview proactive assistants (90% and 80% of participants
respectively). In contrast, less than half of participants (47%) in the Persistent Suggest proactive condition preferred
having the proactive assistant. We find that both Suggest and Suggest and Preview variants are statistically different
than the Persistent Suggest variant (𝑝 = 0.005 and 𝑝 = 0.03 respectively). On average, participants had a neutral
view of the baseline assistant in terms of usefulness. As such, participants viewed both the Suggest and Suggest and

Preview variants on average as net beneficial.
Comparing participant responses across proactive variants. Participants in the Persistent Suggest condition

tended to not prefer the proactive assistant because they often found the assistant to be “distracting” and “annoying”.
One participant noted that “the non-proactive chat assistant was best because it didn’t interrupt what I was doing.”. In
contrast, participants in the Suggest and Suggest and Preview conditions tended to have a positive view of the
suggestions provided by the proactive assistant compared to the baseline. One participant noted that they preferred the
GenAICHI: CHI 2025 Workshop on Generative AI and HCI 4
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“non-proactive was pretty useless because it didn’t have any of the context regarding what I was trying to do or the task; I

could only really use it for pure syntax like what I would usually search StackOverflow for. Proactive was better because it

had more context.” and another stated that “I really wasn’t sure what to ask for with the non-proactive chat” since the
baseline chat “required manual input to generate advice”.
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