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How Individual Traits and Language Styles Shape Preferences
In Open-ended User-LLM Interaction
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Fig. 1. Our studies explore how the LLM’s language styles and user’s individual traits influence user’s preferences toward the LLM
in open-ended interaction. In Study 1, we conducted exploratory study on the direct influence of LLM’s language styles on user’s
preferences. In Study 2, we conducted experimental study on the moderating effects of user’s individual traits on the influence of
LLM’s language styles on user’s preferences.

CCS Concepts: • Human-centered computing → User studies; Empirical studies in HCI.

Additional Key Words and Phrases: Human-AI Interaction, LLM, User’s Preference, Personality Traits, Personalization

1 INTRODUCTION

What makes an interaction with the LLM more preferable for the user? It is intuitive to assume that information
accuracy in the LLM’s responses would be one of the influential variables. While sometimes that is indeed the case [8, 9],
recent studies have found that inaccurate LLM’s responses could still be preferable when they are perceived to be more
friendly and not admitting its limitation [12], more verbose and grammatically correct [21], or well-articulated [9]. Each
of these variables interestingly falls under the category of linguistic style [10], as it represents a linguistic feature with a
communicative purpose, implying the LLM’s language style might be significantly influencing the user’s preferences.

Understanding the influence of LLM’s language style on user’s preferences is crucial, particularly in open-ended

interaction mode—where users deliberately converse and exchange new information and opinions with the LLM, as it
could lead to double-edged consequences. Having the LLM conversing with the style that maximizes user’s preferences
might be valuable in improving overall user experiences [19, 20]. But, it also means the users would be more susceptible
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2 Anon.

to accepting information from the LLMs that might be misinformed or hallucinated [1, 17]. How does the relationship
between the LLM’s language style and user’s preference really work? Are all users being influenced similarly by the
same language styles? Or perhaps, user’s personal factors such as their demographics and individual traits also play
role in shaping their preferences? Our long-term objective is to address these research inquiries. As a starting point, we
translated these initial inquiries into the following research questions:

• RQ.1: How do the LLM’s language styles influence the user’s preferences toward their interaction with the model?
• RQ.2: How do the user’s individual traits moderate the influence of the LLM’s language styles

on the user’s preferences?

In the following sections, we will answer our RQs through a series of exploratory and experimental user studies.

2 STUDY 1: Exploratory Study on Style and Preference in User-LLM Interaction

To answer RQ.1, we conduct an exploratory study on 3 preference-alignment datasets: ArenaPref [2], MultiPref [14], and
ChatbotArena [22]. These secondary datasets contain a wide-variety of real-world User-LLM interactions, each repre-
senting different user populations. However, they don’t contain user-specific information, such as the user’s individual
traits. Nonetheless, they have been prevalent in shaping the research of the Human-LLM preference alignment [5].

User-LLM Interaction Data Selection. Each instance in the dataset is composed of a user’s query, 2 different LLM’s
responses, and the user’s binary preference for the responses. We focused only on open-ended interaction scenarios
and found that including only queries with interrogative prefixes (e.g. what, how, are) and without math, code, or
computation keywords, effectively filters out non-open-ended scenarios. To minimize confounding variables, we further
constrain our instances to only those that are in English, involve single-turn interactions, and have response pairs that
are semantically similar by measuring their text embeddings’ cosine similarity.

Stylistic Features Measurement. Drawing from works in the linguistic analysis of the LLMs and language style in
general [4, 11, 12], we define 9 style features to be measured: information richness, information presentation, vocabulary
complexity, usage of active voices, figurativeness, friendliness, interactiveness, authoritativeness, and persuasiveness. We
implemented an NLP pipeline to measure the intensity level of each style feature. Depending on the implicitness of the
style, we either measure them via rule-based NLP algorithms or neural-based models (details in App. A.1, A.2).

Binary Preference Regression Analysis. To analyze the influence of the measured LLM’s style features on user’s
preferences, we performed a binary preference regression analysis [15] on each user population. Let 𝑥𝑎, 𝑥𝑏 ∈ R9 be the
style feature pairs of response 𝑎 and 𝑏, and 𝑦 be the preference toward 𝑎 or 𝑏. We defined the independent variables as
the difference between the style features, 𝑥 = 𝑥𝑎 − 𝑥𝑏 , and the dependent variables as 𝑦 ∈ {0, 1}, where 𝑦 = 1 if the user
prefers response 𝑎, and 𝑦 = 0 otherwise. Our preference regression model is then defined as: 𝑦 = 𝑙𝑜𝑔𝑖𝑡 (𝛽0 +

∑9
𝑖=1 𝛽𝑖𝑥𝑖 ).

2.1 Exploratory Study Findings

We examined the parameters of the fitted regression models, particularly the odds associated with the statistically
significant (𝑝 < 0.05) style feature’s coefficient, 1−exp(𝛽𝑖 ), which describes the change of the user’s preference resulting
from an increase in a style feature’s intensity. We visualize the result in Fig 1, with detailed results in App. A.3.

LLM’s Language Style Does Influence User’s Preference. We found that there are at least 3 statistically significant style
features influencing user’s preferences across user populations. In ArenaPref population, an increase in Richness (↑88.6%),
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Style Features Slider
User

Why do people like to share meme with their friends?

LLM

Memes are shared with friends to provide 
entertainment, communicate feelings, and foster 
connection in a humorous manner. What aspects of 
meme sharing are you interested in exploring further?

User

Extraversion
Openness
LLM Trust

 . .
 .
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Individual Traits

Task: Manipulate the LLM’s responses with style feature sliders until it generates the 
most preferred responses.
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 . .
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User’s Binary  
Preferences

LLM’s  
Style Features

Study 2.Study 1.

1
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2

Fig. 2. Methodological Overview of Study 1 (Left) and Study 2 (Right). We attached the experimental GUI for Study 2 in App. B.1.

Complexity (↑26.9%), and Friendliness (↑28.9%) in the LLM’s responses elevate user’s preference. In ChatbotArena, it
was Richness (↑68.3%), Presentation (↑16.0%), and Figurativeness (↑58.1%). Meanwhile, MultiPref seemed to be influenced
by a more diverse set of styles: with an increase in Presentation (↑23.7%), Complexity (↑45.9%), Interactiveness (↑20.0%),
Persuasiveness (↑17.9%), and a decrease in Authoritativeness (↓11.1%), likely elevate the user’s preference.

Population-level Preference Influenced by Different LLM’s Language Style. While the LLM’s language style does
have influence on user’s preference, it varies across different user populations. This variation implies the presence of
confounding variables outside of ones we’ve controlled in §2a, and possible moderating variables such as the user’s
demographics and traits that are unknown in the datasets, which we are about to investigate in the next study.

3 STUDY 2: Experimental Study on Individual Traits, Style, and Preference in User-LLM Interaction

To answer RQ.2, we conducted an experimental study involving human users. We deliberately collect and study the role
of user’s individual traits, a variable that tends to be missing in the current User-LLM preference datasets and study.

Experimental Design and Procedure. We designed a within-subject experiment where each user went through 2
stages. In the first stage, we asked them to fill-in questionnaires that measure their individual traits. In the second stage,
we asked them to interact with an LLM via the provided interface, they will be given the ability to manipulate the LLM’s
language styles, and asked to manipulate the LLM’s responses to their preferences. The core methods in this experiment
follows [7, 18], which we designed to sample the LLM’s language style that maximizes the user’s preferences.

User Participants. Our user participants pool are based in the UK, use English as their primary language, within the
age of 20-30, balanced by their sex, and are daily users of LLM services (e.g. OpenAI, Anthropic). We recruited 10 users
from the Prolific platform, where each user contributed 60 samples of preferences. After filtering, we have a total of 162
valid preference samples to analyze. Detailed user’s statistics is reported in App. B.2. It is important to interpret the rest
of this findings cautiously, as we have not covered wider demographic diversity and larger sample sizes.

User’s Individual Traits Measurement. We measure 2 sets of user’s individual traits: their personality traits and
trust toward the LLMs. To measure their personality traits, we administer the 10-item measure of the Big-5 personality
dimensions [6] to the user, which measure the user’s level of Extraversion, Conscientiousness, Neuroticism, Openness, and
Agreeableness. To measure their trust toward the LLMs, we administer the ChatGPT Trust Scale [3] to the user.

Stimuli Design, Style-varying LLM’s Responses. We first defined 3 queries for this study and prompt a LLM
(OpenAI’s GPT-4o-Mini) with a factual context to provide a baseline response. To craft responses in a variety of styles,
we implemented a zero-shot style transfer pipeline following [16], which we designed to modify the baseline response
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to convey a given style features. As we have 3 queries and 9 style features with 3 intensity levels, we synthesized a total
of 3 ∗ 39 = 59, 049 LLM’s responses as the possible stimuli for the users. Details of the prompts is attached in App B.3.

Sampling Preference-eliciting Style with People. Collecting user’s preferences in a similar fashion as the datasets
used in Study 1 (§2) would be prohibitively costly for us to do. We instead adopted gibbs sampling with people [7] method
to effectively sample the LLM’s responses with style features that maximize each user’s preferences. Let 𝑔(𝑣1, ..., 𝑣9) be
the LLM’s response parametrized by the style features, the user will be asked to iteratively manipulate the intensity of
𝑣𝑖 ∈ {1, 2, 3} while others are fixed, then choose which intensity generates LLM’s responses that they prefer the most.
In the end, we would have chains of style features that converged toward a style combination the user prefer the most.

Moderated Binary Preference Regression Analysis. To analyze the moderation effect of user’s individual traits, we
expand the regression analysis in Study 1 to include the traits as moderator variables. For each measured individual
trait, 𝑧𝑘 , we performed moderated preference regression model defined as: 𝑦 = 𝑙𝑜𝑔𝑖𝑡 (𝛽0 +

∑9
𝑖=1 𝛽𝑖𝑥𝑖 +

∑9
𝑗=1 𝛽 𝑗𝑥𝑖𝑧𝑘 ).

3.1 Experimental Study Findings

For each trait 𝑧𝑘 , We examined the shift of odds associated with the statistically significant (𝑝 < 0.05) trait-moderated
style feature’s coefficient, 1 − 𝑒𝑥𝑝 (𝛽𝑖 + 𝛽 𝑗𝑧𝑘 ). We visualize the result in Fig. 1 (Right).

Individual Traits Moderate the Influence of Language Style Differently. We found that depending on user’s
individual traits, certain LLM’s language styles influence user’s preferences differently. For users with higher level
of ↑Agreeableness, lower level of ↓Figurativeness and higher level of ↑Authoritativeness increase their preferences. For
users with ↑Extraversion, it was ↓Figurativeness, ↓Richness, ↓Complexity, ↓Friendliness, and ↓Active Voice. Users with
↑Neuroticism influenced more by ↑Figurativeness, ↑Active Voice, ↓Authoritativeness, and ↓Interactiveness. For users with
↑Openness, it was ↑Figurativeness, ↑Complexity, and ↑Authoritativeness. Meanwhile, users with ↑Trust toward LLMs are
influenced by ↓Figurativeness, ↓Interactiveness, and ↑Active Voice. O
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Fig. 3. Example of Polarizing
Moderator Effects

Polarizing Effects of Individual Traits. Though we have observed various statis-
tically significant moderation effects of each trait independently, user’s individuality
is represented by a combination of these traits as whole. In the case of Extraversion and
Neuroticism for example, we can see that these traits moderate user’s preference in a
polarizing way (Fig. 3). How does these dynamic apply for users with both high or low
level of those traits? Which language styles will influence them more? Future studies
could explore these questions further with more observational samples and applying
techniques such as joint moderation effects or other explainability methods [13].

4 Conclusion, Limitation, and Future Direction

In this paper, we presented our preliminary study on how user’s very own individual traits and LLM’s language style
influence user’s preferences in open-ended User-LLM interaction. As a preliminary study, it is important to interpret
our findings with caution, given that our samples still need wider demographics diversity and larger sample sizes.
Our future direction is to first address these limitations. We are then interested to further investigate the joint effects
and possible causal relationship between and beyond our variables; Why do users with certain traits are more or less
influenced by certain language style? Will the elicited preferences actually translate into better user experiences? Will
it increase their susceptibility to LLM’s misinformation, hallucination, and other risks?
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A Details on Study 1

A.1 Measurement of Language Stylistic Features

Below we listed the measurement methods for each stylistic feature we have defined. This collection of methods make
up our stylistic feature measurement pipeline mentioned in §2.

Style Measurement Method Main Tools

Richness Measure the frequencies of the nouns, adjectives, conjunctions, coor-
dinating conjunctions, and subordinating conjunctions in the LLM’s
response.

spaCy’s NLP pipeline

Presentation Measure the presence of various markdown styling, such as bolding,
italicizing, and list enumeration formatting in the LLM’s response.

RegEx matching

Complexity Measure the Dale-Chall readability score of the LLM’s response. Textstat library

Figurativeness Measure the intensity level of figurativeness through zero-shot clas-
sification prompting.

OpenAI’s GPT-4o-Mini
as zero-shot classifier

Friendliness Measure the intensity level of friendliness through zero-shot classifi-
cation prompting.

OpenAI’s GPT-4o-Mini
as zero-shot classifier

Interactiveness Measure the intensity level of interactiveness through zero-shot clas-
sification prompting.

OpenAI’s GPT-4o-Mini
as zero-shot classifier

Authoritativeness Measure the intensity level of authorativeness through neural-based
classifier model.

BERT-based model
trained on Szeged
Uncertainty Corpus

Persuasiveness Measure the discrete intensity level of persuasiveness through zero-
shot classification prompting.

OpenAI’s GPT-4o-Mini
as zero-shot classifier

Active Voice Measure the frequencies of the linguistic pattern match of active and
passive voices in the LLM’s response.

spaCy’s NLP pipeline
and linguistic pattern
matching

Table 1. Measurement methods and tools for each language style features.

A.2 Summary Statistics of Measured Styles Across Populations

Below we reported the summary statistics (mean and standard deviation) of the measured stylistic features in the LLM’s
responses across populations.

Mean (SD) of Stylistic Features

Rich. Pres. Comp. Figu. Frie. Inte. Auth. Pers. Acti.
[0,∞] [1.0,3.0] [4.9, 9.9] [1.0,3.0] [1.0,3.0] [1.0,3.0] [0.0,1.0] [1.0,3.0] [0.0,1.0]

ArenaPref 45.83 (37.75) 0.35 (0.50) 9.28 (4.69) 1.01 (0.14) 1.12 (0.39) 1.17 (0.47) 0.64 (0.38) 1.12 (0.33) 0.79 (0.29)
ChatbotArena 42.10 (36.07) 0.28 (0.45) 8.88 (2.10) 1.01 (0.11) 1.07 (0.29) 1.10 (0.37) 0.66 (0.38) 1.13 (0.33) 0.77 (0.31)
MultiPref 49.14 (34.54) 0.35 (0.49) 9.00 (1.24) 1.00 (0.09) 1.18 (0.41) 1.15 (0.38) 0.49 (0.37) 1.46 (0.53) 0.84 (0.23)

Table 2. Summary statistics of the measured stylistic features.

https://aclanthology.org/2025.coling-main.21/
https://arxiv.org/abs/2306.05685
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A.3 Binary Preference Regression Results

Below we attached the numerical results version of Fig. 1 (Left).

Rich. Pres. Comp. Figu. Frie. Inte. Auth. Pers. Acti.
Population

ArenaPref 0.680∗∗ 0.160∗ 0.117 0.581∗∗ -0.080 0.125 -0.004 -0.121 -0.050
ChatbotArena 0.880∗∗ 0.085 0.269∗ 0.810 0.289∗ -0.089 0.034 -0.062 0.025
MultiPref 0.199 0.230∗ 0.450∗ -0.110 0.100 0.200∗ -0.110∗ 0.179∗ 0.116

Our Experiment (Study 2) 0.031 0.140 0.278+ -0.017 0.402∗ 0.081 0.178 -0.070 -0.034

Table 3. Odds of a particular language style feature increasing or decreasing the user’s preferences.
Statistical significance: ∗∗ : 𝑝 < 0.01,∗ : 𝑝 < 0.05,+ : 𝑝 < 0.1.

B Details on Study 2

B.1 Sampling with People Interface

The user interface for sampling with people experiment is shown in Fig. 4. Each participant is given the following
instruction to follow (the instruction is self-contained in the experimental GUI, we show it here for brevity):

Go through every option in Tile #k, until the LLM gives you the response the you prefer the most among the options. After
it gives the response that you feel you prefer the most, click ’I Prefer This Response the Most.’

• Always re-read the new manipulated response from start to finish.
• Ask yourself: "Do I like this new response more than the previous one?"
• You don’t have to be overly objective or over-analyze your decision in preferring or liking the LLM’s responses. In

fact, you are encouraged to go with "what feels right".

Fig. 4. User interface for our sampling with people experiment. During the actual experiment, the style names and intensity levels are
not shown to the users, and the order of both are randomized for every iteration.
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8 Anon.

B.2 User Participants Demographics

Below we report our participant pool’s demographics and individual traits.

Participant’s Demographics

Age Mean (SD) 25.30 (2.83)
Range 20-30

Sex Female 5
Male 5

Ethinicity Asian 1
Black 6
White 1
Mixed 1
Prefer not to say 1

Daily Usage of AI/LLM Every day 3
Multiple times every day 7

LLM Service Usage OpenAI’s ChatGPT 10
(A user can report multiple
LLM services they used)

Anthropic’s Claude 5

Google’s Gemini 4
Others 8

Participant’s Individual Traits

Extraversion Mean (SD) 2.85 (0.92)
Range 1-5

Agreeableness Mean (SD) 4.00 (0.77)
Range 1-5

Conscientiousness Mean (SD) 4.25 (0.71)
Range 1-5

Neuroticism Mean (SD) 2.40 (0.86)
Range 1-5

Openness Mean (SD) 3.60 (0.73)
Range 1-5

Trust toward LLM Mean (SD) 3.59 (0.37)
Range 1-4

Num. of Participants 10
Num. of Rejected Participants 1

Num. of Preference Samples
per Participants

60

Num. of Gibbs Sampling’s
Burn-in Period

2

Final Num. of Preference Sam-
ples After Filtering

n = 162

Table 4. Distribution of user participant’s demographics and individual traits in Study 2.
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B.3 Zero-shot Style Transfer Prompting

The following are the description of the intensity level for each stylistic features, particularly used to prompt the
zero-shot style transfer pipeline for synthesizing our stimuli.

Style Intensity Level & Description

Richness L1. Provides a straightforward, unembellished answer to the question, focusing solely on the essential information.
L2. Offers the answer along with additional information that adds context or important details but remains relevant to the
question.
L3. Provides the answer along with excessive details, tangents, or background information that, while interesting, does not
directly support the original question.

Presentation L1. Using a single paragraph to structure the utterance without any formatting elements.
L2. Using two paragprahs to structure the utterance. Important words and phrases in the utterance are formatted with
bold or italic style.
L3. Using more than two paragprahs to structure the utterance with bolding, italicizing, headings, bullet points, numbered
list the key words and phrases as the formatting elements.

Complexity L1. Using vocabulary of verbs, nouns, adjectives, and adverbs that are very easy to read. Easily understood by an average
twelve year old student.
L2. Using vocabulary of verbs, nouns, adjectives, and adverbs that are moderately difficult to read. Best understood by an
average high-school student.
L3. Using vocabulary of verbs, nouns, adjectives, and adverbs that are very difficult to read. Best understood by university
graduates and experienced scholars.

Figurativeness L1. Does not convey any figurative language.
L2. Re-emphasize an explanation by figurative language in the form of simple metaphor that introduce direct comparisons
using common ideas.
L3. Re-emphasize an explanation by figurative language in the form of complex metaphors that introduce imaginative yet
relatable ideas.

Friendliness L1. Does not convey expressions of friendliness.
L2. Use expression that convey politeness, warmth, approachable, and come off as formal.
L3. Use expression that convey politeness, warmth, approachable, and come off as informal.

Interactiveness L1. Does not seek further engagement or clarification regarding the query of the utterance.
L2. Attempt to engage with the user’s curiosity. These include prompting the user to consider a broader context or related
topics.
L3. Attempt to engage with the user’s curiosity and intention. These include explicitly asking for more relevant information
or seeking to understand the user’s intent.

Authoritativeness L1. Using expressions that are lacking in confidence and detail. These includes the incorporation of tentative languages
(e.g., "maybe," "might be," "I think").
L2. Does not convey expressions of authoritativeness.
L3. Using expressions that exudes confidence and expertise. These includes the incorporation of assertive language (e.g.,
“is,” “will,” “must”).

Persuasiveness L1. Does not use expressions that attempts to convince the user more to accept the information, statements, facts, or
opinions in the utterance.
L2. Attempts to convince the user more to accept the information or opinions in the utterance, using moderate emotional
appeal or reasoning which lacks deeper engagement or urgency.
L3. Attempts to convince the user more to accept the information or opinions in the utterance, using strong emotional
appeal or reasoning to effectively convince the user.

Active Voice L1. Always using passive voice, if the context is appropriate, aiming for a less direct and less engaging style of communica-
tion.
L2. Using a mix of both passive and active voice, striking a balance between engagement and formality style of communi-
cation.
L3. Always using active voice, if the context is appropriate, resulting in clear, direct, and engaging style of communication.

Table 5. Description of stylistic features’ intensity level used for our zero-shot style transfer pipeline to synthesize style-varying
LLM’s responses.
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