
 1 

 
 
Abstract— This study looks into two main areas related to detecting 
fraud without using labeled data. The first area focuses on using 
evaluation methods from Generative Adversarial Networks (GANs) to 
spot fraud or outliers by calculating the differences between samples 
from normal (non-fraudulent) data and generated data. The second area 
explores whether the discriminator of a GAN can be used as a feature 
space for calculating these differences. Since fraudulent examples are 
not available during training, the problem is approached as finding 
outliers. The GAN is trained using only non-fraudulent data, which 
helps create a feature space in the discriminator. Then, the study 
calculates the differences between known non-fraudulent data and 
unknown samples to identify potential fraud. The study also includes 
three experiments to test how factors like the type of GAN model, 
dimensionality reduction, and the percentage of fraud in the data affect 
the performance of fraud detection. The results offer valuable insights 
into how GAN-based metrics and feature spaces can be used to detect 
fraud even without labeled fraudulent data. 
 

Index Terms— Fraud, Financial, Generative Adversarial 
Networks, Outliers 

I. INTRODUCTION 
This study explores two primary topics. The first topic focuses 
on evaluating fraud detection methods using measures 
associated with Generative Adversarial Networks (GANs) [1], 
[2], [3], [4], [5], [6]. These measures assess the difference, or 
distance, between two groups of data: one group representing 
the original target population and another made up of data 
generated by a GAN. The second topic examines whether the 
discriminator component of a GAN can be effectively used as a 
feature space. In this feature space, the distance measures 
mentioned earlier could be calculated to aid in fraud or anomaly 
detection. The research takes place in the context of 
unsupervised fraud detection. This approach assumes there are 
no labeled examples of fraudulent data during the training 
phase. As a result, the problem is treated as one of identifying 
outliers. Outliers are data points that differ significantly from 
the normal pattern. In this setting, distance measures are 
calculated for new data points, and these distances help 
determine whether the data points are outliers. If they are 
classified as outliers, they are considered fraudulent. However, 
the process begins by training GAN models on the available 
data, which is assumed to consist only of non-fraudulent 
observations. The goal of this training is to use the discriminator 
component of the GAN to create a feature space. The 
discriminator is a part of the GAN that learns to differentiate 

between real and generated data during training. In the created 
feature space, the distances between known non-fraudulent data 
and unknown observations are calculated. These unknown 
observations may include both non-fraudulent and fraudulent 
data. By analyzing these distances, the method aims to identify 
potential fraud. 
 
Three main experiments are conducted to study how different 
factors influence the behavior of these distance measures. The 
study investigates how the choice of the GAN model affects the 
accuracy and reliability of the distance measures in detecting 
outliers. Secondly, high-dimensional data can be challenging to 
work with, as it may lead to noisy or less interpretable results. 
Dimensionality reduction techniques are applied to simplify the 
data, and the impact of these techniques on distance measures 
is evaluated. Thirdly, the proportion of fraudulent observations: 
The presence of fraudulent data within the dataset could 
influence how well the model detects outliers. The experiments 
explore how varying the proportion of fraudulent data affects 
the calculated distances and the model's ability to classify fraud 
accurately. By focusing on these factors, the study aims to 
enhance the understanding of how GAN-based methods can be 
applied to fraud detection in an unsupervised setting.  
 
The study is as follows; the relevant works will be shown in the 
next section. The materials and method are described in Section 
III. The experimental analysis and result analysis are carried out 
in Section IV, and in Section V, we wrap up the study with some 
conclusions and recommendations for further research. 

II. RELATED WORKS 
Generative models are advanced tools in Machine Learning 
(ML) designed to generate data points based on a target 
distribution. For instance, they can create samples that mimic a 
target data distribution according to [7]. Additionally, they can 
extend to generate data conditioned on labels following the 
distribution. Broadly, generative models are classified into two 
main types: explicit [8] and implicit [8] models. Explicit models 
explicitly define the data distribution using a parametric form. 
They often include a log-likelihood function that measures how 
well the data fits the model. The goal is to maximize the 
likelihood or a close approximation of it. Some explicit models 
have tractable density functions, making them easier to 
optimize, while others use approximations to handle intractable 
densities. For instance, PixelRNN [9]v and PixelCNN [10]: 
These models focus on generating images pixel by pixel. Each 

Leveraging Generative Adversarial Networks 
for Unsupervised Fraud Detection 

 
Sunil Pradhan Sharma*, Elakkiya Daivam**  

*Senior Lead Software Engineer, Capital One Services, LLC 
                          **Lead Software Engineer, Capital One Services, LLC 

 



 2 

image is treated as a grid of pixels, which is rearranged into a 
sequence. These models estimate the joint probability 
distribution of all pixels using the product of conditional 
probabilities. In both approaches, images are generated 
sequentially, starting from one corner. Similarly, Variational 
Autoencoders (VAEs) [11] are similar to autoencoders but 
impose additional constraints to learn a structured latent 
representation of the data. A standard autoencoder compresses 
input data into a smaller representation and then reconstructs it. 
VAEs, however, map the input into a latent space described by 
a mean and variance.  To generate data, VAEs sample from this 
latent distribution and use a decoder to map these samples back 
to the original data space. If trained effectively, observations 
close in the latent space correspond to similar observations in 
the original data. A key technique in VAEs is the 
reparameterization trick, which ensures gradients are 
differentiable during training. Unlike explicit models, implicit 
models do not define a specific probability distribution or log-
likelihood function. Instead, they rely on stochastic procedures 
to generate data directly. GANs [12] are a popular type of 
implicit model. They involve two neural networks: a generator 
and a discriminator. The generator transforms random noise 
into samples resembling the target distribution, while the 
discriminator tries to distinguish between real and generated 
data. Over time, the generator learns to create more realistic 
samples, effectively mimicking the target distribution. Since 
their introduction in 2014, GANs have seen numerous 
variations and improvements. These advancements target 
different aspects, such as stability during training and better-
quality outputs. While GANs are powerful, they are also 
challenging to train due to issues like mode collapse and 
instability [13], [14], [15], [16], [17], [18], [19], [20], [21]. 
 
Evaluating generative models is crucial, particularly to measure 
the quality and diversity of generated data. For image-based 
models like GANs, evaluation methods are generally 
categorized as quantitative or qualitative. Quantitative 
numerically assess the performance of generative models. One 
popular metric is the Inception Score (IS), which evaluates the 
quality of generated images based on a pre-trained image 
classification model. While widely used, IS has limitations, 
such as its inability to account for similarities between the 
generated and real data distributions. Whereas, the qualitative 
measures involve human judgment or visual inspection of the 
generated samples. However, they are subjective and may lack 
consistency. To address these limitations, some measures focus 
on comparing the distributions of real and generated data. For 
instance, metrics like the Fréchet Inception Distance (FID) 
compute the distance between feature representations of real 
and generated images. A lower FID indicates closer similarity 
between distributions. Generative models, particularly GANs, 
have demonstrated impressive results in areas like image 

 
1 https://www.tensorflow.org/install 
2 https://numpy.org/ 
3 https://pandas.pydata.org/ 
4 https://techifysolutions.com/blog/seaborn-vs-matplotlib/ 
5 https://pythonot.github.io/ 
6 The Wasserstein distance, which emphasizes geometric relationships, 

quantifies the least amount of work needed to convert one probability 
distribution into another. 

generation [22], text synthesis [23], and fraud detection [24]. 
However, challenges persist, especially during the training 
process. For instance, achieving stable training in GANs 
requires careful tuning of hyperparameters and loss functions. 
For tasks such as fraud detection, where the generated data's 
distribution must align closely with the real data, evaluation 
metrics that compare distributions are more appropriate. 

III. MATERIALS AND METHODS 
This section outlines the experiments conducted to explore 
various behaviors and gain insights into specific research 
questions. The experiments were designed to assess the 
performance of models and investigate different aspects of 
distance metrics. Before delving into the experimental details, 
it is important to describe the environment in which they were 
performed. This includes the hardware and software 
configurations used, providing clarity about the computational 
resources and facilitating reproducibility. The experiments 
were conducted on a desktop computer with the hardware such 
as i) CPU: AMD Ryzen 2600x, ii) RAM: 32GB (2 x 16GB at 
3200MHz), iii) GPU: Nvidia GTX1080 with 8GB VRAM, and 
iv) Storage: Samsung 970 Evo 500GB NVMe SSD. The 
machine ran on Microsoft Windows 10 and utilized Nvidia’s 
CUDA toolkit (Version 11) and the CUDA Deep Neural 
Network library (cuDNN, Version 8) to enable GPU-
accelerated computing. The experiments were implemented in 
Python (Version 3.7) with the key libraries such as i) 
TensorFlow 21: Used for building and training neural network 
models. It also facilitated parallel computation on the GPU, ii) 
NumPy2: Used for efficient matrix operations, iii) Pandas3: 
Used to create and manipulate data frames for organizing 
results, iv) Matplotlib and Seaborn4: Employed for visualizing 
experimental results, and v) Python Optimal Transport5: 
Implemented the Wasserstein distance6 metric for the analysis. 
Additional tools like Graphviz7 and PyDot8 were used to 
generate visual representations of GAN architectures but were 
not essential for running the experiments. To understand the 
behavior of distance measures such as Wasserstein distance, 
Kernel Maximum Mean Discrepancy9 (MMD), and Frechet 
distance10, an initial experiment was conducted using controlled 
multivariate datasets. The experiment used four multivariate 
distributions, each with three variables. The first two variables 
shared identical Gaussian distributions, while the third variable 
followed a distinct Gaussian distribution for each dataset. A key 
focus of the experiments was to evaluate how feature spaces 
influence distance metrics. Data exists within a multi-
dimensional space, where each dimension represents a feature 
or variable. For certain data types, such as images, raw features 
(e.g., pixel values) carry limited meaning. Transforming this 
data into a meaningful feature space helps extract relevant 
characteristics for analysis. 

7 https://graphviz.org/ 
8 https://pypi.org/project/pydot/ 
9 By comparing the means of two probability distributions in a replicating 

kernel Hilbert space, MMD calculates the difference between them. 
10 Frechet distance calculates the least amount of work required to align two 

curves while maintaining their order, thereby indicating how similar they are. 



 3 

A. Dataset Analysis 
This experiment utilizes the MNIST11 dataset, a collection of 
black and white images representing handwritten digits. Each 
image is 28 x 28 pixels in size with one depth dimension, giving 
each observation a shape of (28, 28, 1). The digits range from 0 
to 9, and their frequency is evenly distributed. The dataset 
comprises two parts: 50,000 training samples and 10,000 test 
samples. The purpose of this study is to analyze how different 
distance measures behave in various feature spaces. To make 
the comparison more interesting, we expand the dataset by 
creating two additional datasets: i) Shuffled Pixel Dataset: 
Derived from the MNIST test data, where the pixel positions 
are randomly rearranged, and ii) Random Pixel Dataset: 
Composed of images with pixel values generated randomly 
from a uniform distribution. These datasets allow us to explore 
how pixel arrangements and distributions impact distance 
metrics. For humans, it’s easy to distinguish between original 
and shuffled images based on pixel arrangement. However, the 
pixel value distributions in both datasets are identical, making 
the difference invisible without considering their positions. 
Meanwhile, the randomly generated dataset has a completely 
different distribution. We compare distance measures in two 
main feature spaces: i) Original Pixel Space: Directly uses the 
pixel values of the images, and ii) Feature Spaces from GAN 
Discriminator Networks: The penultimate layers of GAN 
discriminators generate these feature spaces. GAN 
discriminators are trained to differentiate real images from fake 
ones. Their learned features could result in distinct activation 
patterns for the original and shuffled datasets, though this is not 
guaranteed and requires investigation. Since GANs function as 
black boxes, we aim to uncover whether they detect meaningful 
differences in pixel arrangements. By comparing the sensitivity 
of distance measures in these feature spaces, we can better 
understand their effectiveness. To calculate distances, images 
need to be converted into a 2D matrix format. Each image is 
flattened into a single row vector containing all its pixel values. 
These vectors are stacked to form a 2D matrix where each row 
represents an observation and each column corresponds to a 
pixel (variable). For GAN-generated feature spaces, the 
activation values from the discriminator layers are already in 
vector form and are similarly arranged into rows. We also 
explore Principal Component Analysis12 (PCA) and Uniform 
Manifold Approximation and Projection13 (UMAP) to reduce 
the feature space dimensions. High-dimensional data can slow 
down distance metric calculations, so investigating how much 
information is retained after dimensionality reduction is 
important. 

B. Model Analysis 
GANs are powerful tools for generating data, but their 
performance can vary based on the architecture and training 
methods used. This study aims to explore how these differences 
influence the values calculated in the activation layer feature 
space. To achieve this, we will work with three distinct GAN 
models: Deep Convolutional GAN (DCGAN), Least Squares 

 
11 https://www.kaggle.com/datasets/hojjatk/mnist-dataset 
12 By finding orthogonal components that maximize variance, PCA 

decreases the dimensionality of data while maintaining important properties in 
complicated datasets. 

GAN (LSGAN), and Wasserstein GAN (WGAN), each 
employing unique architectures and training techniques. The 
goal is to analyze the discriminators of these models after 
training and assess how their architectural differences affect the 
feature space. Each model is trained using batch training with a 
batch size of 128 observations. The DCGAN model we use is 
based on the designed with upsampling, convolutional, batch 
normalization, and ReLU activation layers. These layers are 
repeated twice, creating a network structure that progressively 
transforms random noise into realistic data samples. Whereas, 
the discriminator includes convolutional layers, LeakyReLU 
activation, dropout layers, and batch normalization. Its primary 
role is to differentiate between real and generated data by 
analyzing patterns in the input. LSGAN architecture is based on 
the traditional GANs, it uses a least-squares loss function to 
improve training stability and encourage the generator to 
produce samples close to the real data distribution. WGAN is 
designed to address instability and mode collapse issues in 
traditional GANs by replacing the standard loss function with a 
Wasserstein distance metric. All three GAN models are trained 
using batch training with a batch size of 128 observations. This 
method processes small groups of data samples at a time, 
allowing the models to learn effectively while managing 
computational resources. The focus of this investigation is on 
the activation layer values within the discriminators of the three 
GAN architectures. By comparing these values, we aim to 
determine how differences in architecture and training methods 
influence the feature space. This analysis is critical because the 
activation layer feature space plays a significant role in how 
well the discriminator can differentiate real from generated 
data. 

IV. EXPERIMENTAL ANALYSIS 
This study explores how distance metrics can be applied to 
detect fraud. The experiments utilize the CIFAR1014 and 
CIFAR10015 datasets, which contain 32 x 32-pixel color 
images. While CIFAR10 includes images from 10 categories, 
CIFAR100 spans 100 distinct categories with no overlapping 
subjects. Despite some similarities between categories, like a 
bus and a tractor (both vehicles), they remain fundamentally 
different. For the experiments, the CIFAR10 dataset represents 
"real" or "non-fraudulent" data, and the CIFAR100 dataset 
represents "fake" or "fraudulent" data. The CIFAR10 data is 
divided into two subsets: i) Trueknown: Used for training GAN 
models, generating feature spaces, and creating reference 
distributions, and ii) Trueunknown: Supplies new "real" 
observations for testing. The CIFAR100 data is labeled as 
unknown, simulating fraudulent data, and excluded from 
training. The goal is to evaluate how distance measures behave 
within feature spaces to distinguish between fraudulent and 
non-fraudulent observations. DCGAN is employed for feature 
generation due to its superior image quality in prior tests. 
Additionally, an InceptionV3 model, pre-trained on ImageNet, 
provides another feature space for comparison. Two types of 
fraud detection are examined: i) Multiple Observations: 

13 A dimensionality reduction method called UMAP maintains both local 
and global data structures for display. 

14 https://www.kaggle.com/c/cifar-10/ 
15 https://www.kaggle.com/datasets/fedesoriano/cifar100 



 4 

Analyzing groups of samples to detect fraud, and ii) Single 
Observation: Investigating fraud within individual 
observations. The experiment tests the sensitivity of distance 
metrics to varying proportions of fraudulent data in a sample. 
This experiment aims to identify patterns, such as linear or 
exponential relationships, between fraud proportions and 
distance values. These insights help evaluate the feasibility of 
fraud detection models based on distance metrics. For 
individual observations, the distance metrics require data in a 
multivariate format. To achieve this, single observation feature 
vectors are transformed into matrices through: i) Splitting: 
Dividing the vector into smaller parts to form a matrix, and ii) 
Repeating with Noise: Duplicating the vector with slight 
variations, though this approach is complex and may distort 
information. 

A. Result Analysis 

In this experiment, we calculated the distances between pairs of 
samples from four different multivariate distributions: XAX_A, 
XBX_B, XCX_C, and XDX_D. To better understand the 
results, we analyzed the distributions of values for the X3X_3 
variable in all four samples. These distributions are shown in 
Fig. 1. The key findings from the experiment are summarized 
in Table I, which provides the average distances between the 
distributions for 100 samples along with their 95% confidence 
intervals. The results mostly followed expected patterns. The 
average distance was smallest between the distributions that 
were most similar and largest between those that were the most 
different. However, there was an exception with the Kernel 
MMD metric. For this metric, the average distance between the 
distributions N(1,2)N(1, 2) and N(4,2)N(4, 2) was greater than 
the average distance between N(1,2)N(1, 2) and N(−2,4)N(-2, 
4). For the other distance metrics, the distances consistently 
increased as the distributions became more distinct. One 
interesting observation was that, across all metrics, the average 
distance grew more significantly when the mean changed by 2 
(as in N(1,2)N(1, 2) to N(4,2)N(4, 2)) compared to when the 
standard deviation increased by 2 (as in N(1,2)N(1, 2) to 
N(1,4)N(1, 4)). This suggests that a shift in the mean has a 
greater impact on how different the distributions appear. This 
makes sense because when the mean shifts, a larger portion of 
the distribution moves outside the original range. In contrast, an 
increase in the standard deviation mostly stretches the 
distribution while keeping much of it within the same range. 
Examining the 95% confidence intervals provided additional 
insights. For the Wasserstein and Kernel MMD distances, the 
confidence intervals for the first three distributions did not 
overlap, indicating clear distinctions between these 
distributions. However, for the Frechet distance, only the first 
two distributions had non-overlapping confidence intervals, 
suggesting that the Frechet distance might be more variable 
compared to the other two metrics. For all three distance 
measures, the confidence intervals for the last two distributions 
overlapped, indicating less distinction between them. This 
overlap could explain the unusual behavior observed with the 
Kernel MMD metric. It is also important to consider that the 
samples in this experiment came from multivariate 
distributions. The random variables X1X_1, X2X_2, and 
X3X_3 in each sample were also generated randomly, and their 

values could have influenced the distance measurements. This 
variability in the underlying data adds complexity to 
interpreting the results but also highlights the dynamic nature 
of these metrics in capturing differences between distributions. 

 

Fig. 1. The X3 random variables' various distributions 

TABLE I 
DISTANCE METRICS BETWEEN DISTRIBUTIONS 

Distance Wasserstein kMMD Frechet 
N(1, 2) to N(1, 

2) 
0.89 (0.791, 

1.034) 
0.077 (0.041, 

0.132) 
0.229 (0.058, 

0.572) 
N(1, 2) to N(1, 

4) 
1.839 (1.403, 

2.345) 
0.254 (0.173, 

0.341) 
4.167 (2.168, 

7.082) 
N(1, 2) to N(4, 

2) 
3.045 (2.591, 

3.651) 
0.517 (0.438, 

0.618) 
9.152 (6.51, 

13.168) 
N(1, 2) to 
N(−2, 4) 

3.320 (2.63, 
4.17) 

0.455 (0.344, 
0.560) 

13.639 (8.199, 
21.965) 

 
1) Feature Space Selection Experiment 

In this experiment, we analysed the distribution of distances 
between known and unknown samples within the feature spaces 
of different GAN discriminator networks. These results were 
compared to the distributions of distances between known-to-
random and known-to-shuffled samples. To create feature 
spaces for this analysis, we trained three distinct GAN models, 
each producing a unique discriminator feature space. The GAN 
models do not need to generate flawless new data for this 
experiment. Instead, the focus is on training the discriminator 
network sufficiently to identify and learn features from the 
dataset. A perfectly trained generator is not essential since the 
discriminator's feature space is the key component in our 
analysis. Once the GAN can produce outputs that resemble the 
original dataset to some degree, we assume the discriminator 
has been trained well enough to create a usable feature space. 
Training GAN models to perfection is notoriously challenging. 
However, the less stringent requirements for this experiment 
make it more manageable to develop an adequate network. All 
three models were trained using the same dataset and for an 
equal number of epochs to maintain consistency in the training 
steps. We used the MNIST dataset, which contains 60,000 
images, as the input for training. The dataset was passed 
through the networks 300 times during training. Fig. 2 
highlights the training process of the DCGAN model. The loss 
values for both the generator and discriminator networks 
dropped significantly at the beginning of training but later 
started to increase gradually. The discriminator accuracy 



 5 

fluctuated initially but eventually stabilized and showed a slow 
upward trend. Sample images generated by the DCGAN looked 
relatively good and closely resembled the original MNIST 
dataset. Fig. 3 shows the training summary for the LSGAN 
model. Unlike DCGAN, the loss values for LSGAN followed a 
smoother trend and remained consistent in the latter half of 
training. The accuracy of the discriminator had less variation 
compared to DCGAN. However, it followed a downward trend 
and eventually stabilized between 0.75 and 0.81. While the 
generated examples were less convincing than those from the 
DCGAN model, they still retained some similarity to the target 
dataset. Fig. 4 outlines the results of the WGAN model. The 
training process for WGAN differed from the other models, as 
its loss values diverged rather thans stabilizing. The 
discriminator's accuracy varied significantly during the early 
stages of training and briefly increased before following a 
downward trend. The generated samples were noticeably 
different from the outputs of the other two models, with gray 
backgrounds instead of white. Additionally, the quality of these 
samples was relatively poor. From this experiment, it is evident 
that the quality and consistency of the training outcomes varied 
among the three models. The DCGAN performed the best in 
generating realistic samples and maintaining stable accuracy 
trends. The LSGAN model showed smoother losses and 
consistent accuracy, but its generated outputs were less 
accurate. The WGAN model faced challenges with divergence 
in losses and produced lower-quality outputs. 

 

Fig. 2. Summary of DCGAN training 

 

Fig. 3. Summary of LSGAN training 

 

Fig. 4. Summary of WGAN training 

V. CONCLUSION AND FUTURE WORKS  
The first experiment, called the feature space experiment, didn’t 
provide much insight. There was little difference between the 
distances calculated in the pixel space and the GAN 

discriminator feature space. We expected the distances to 
increase between known and shuffled samples, but this didn’t 
happen, possibly due to issues with the dataset or the shuffled 
observations containing enough features to reduce the distance. 
The second experiment, focused on multiple observation fraud 
detection, was more promising. The GAN discriminator feature 
space produced distance results similar to the well-known 
Inception feature space, suggesting that the GAN discriminator 
learns useful features for analysis. The distance between real 
and fake observations increased as the proportion of fake data 
grew, which was expected. Different distance metrics showed 
varying results, with Wasserstein distance being least affected 
by dimensionality reduction, while Kernel MMD and Frechet 
distances performed poorly with reduced data. UMAP 
dimensionality reduction also negatively impacted the results. 
The single-observation fraud detection experiment didn’t work 
well, as the distance measures didn’t distinguish between true 
and false observations. The method used to transform 
individual observations into multivariate samples was too 
simple. 

VI. DECLARATIONS 

A. Funding: No funds, grants, or other support was received. 

B. Conflict of Interest: The authors declare that they have no 
known competing for financial interests or personal 
relationships that could have appeared to influence the work 
reported in this paper. 

C. Data Availability: Data will be made on reasonable 
request. 
D. Code Availability: Code will be made on reasonable request. 

REFERENCES 
 
[1] G. S. Kashyap, K. Malik, S. Wazir, and R. Khan, “Using Machine 

Learning to Quantify the Multimedia Risk Due to Fuzzing,” 
Multimed. Tools Appl., vol. 81, no. 25, pp. 36685–36698, Oct. 2022, 
doi: 10.1007/s11042-021-11558-9. 

[2] S. Wazir, G. S. Kashyap, K. Malik, and A. E. I. Brownlee, “Predicting 
the Infection Level of COVID-19 Virus Using Normal Distribution-
Based Approximation Model and PSO,” Springer, Cham, 2023, pp. 
75–91. doi: 10.1007/978-3-031-33183-1_5. 

[3] G. S. Kashyap et al., “Detection of a facemask in real-time using deep 
learning methods: Prevention of Covid 19,” Jan. 2024, Accessed: 
Feb. 04, 2024. [Online]. Available: 
https://arxiv.org/abs/2401.15675v1 

[4] N. Marwah, V. K. Singh, G. S. Kashyap, and S. Wazir, “An analysis 
of the robustness of UAV agriculture field coverage using multi-
agent reinforcement learning,” Int. J. Inf. Technol., vol. 15, no. 4, pp. 
2317–2327, May 2023, doi: 10.1007/s41870-023-01264-0. 

[5] G. S. Kashyap et al., “Revolutionizing Agriculture: A 
Comprehensive Review of Artificial Intelligence Techniques in 
Farming,” Feb. 2024, doi: 10.21203/RS.3.RS-3984385/V1. 

[6] S. Naz and G. S. Kashyap, “Enhancing the predictive capability of a 
mathematical model for pseudomonas aeruginosa through artificial 
neural networks,” Int. J. Inf. Technol. 2024, pp. 1–10, Feb. 2024, doi: 
10.1007/S41870-023-01721-W. 

[7] A. Borji, “Pros and cons of GAN evaluation measures,” Comput. Vis. 
Image Underst., vol. 179, pp. 41–65, Feb. 2019, doi: 
10.1016/j.cviu.2018.10.009. 

[8] F. Chollet, Deep Learning with Python, Second Edition. Manning 
Publications Co. LLC, 2021. Accessed: Dec. 27, 2023. [Online]. 
Available: https://www.manning.com/books/deep-learning-with-
python-second-edition 

[9] A. Goyal, A. Sordoni, M. A. Côté, N. R. Ke, and Y. Bengio, “Z-



 6 

forcing: Training stochastic recurrent networks,” in Advances in 
Neural Information Processing Systems, 2017, pp. 6714–6724. 

[10] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “DDSP: Differentiable 
Digital Signal Processing,” 8th Int. Conf. Learn. Represent. ICLR 
2020, Jan. 2020, Accessed: Feb. 29, 2024. [Online]. Available: 
https://arxiv.org/abs/2001.04643v1 

[11] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer, “MiDI-VAE: 
Modeling dynamics and instrumentation of music with applications 
to style transfer,” in Proceedings of the 19th International Society for 
Music Information Retrieval Conference, ISMIR 2018, International 
Society for Music Information Retrieval, Sep. 2018, pp. 747–754. 
Accessed: Oct. 12, 2024. [Online]. Available: 
https://arxiv.org/abs/1809.07600v1 

[12] I. J. Goodfellow et al., “Generative adversarial nets,” in Advances in 
Neural Information Processing Systems, 2014, pp. 2672–2680. doi: 
10.3156/jsoft.29.5_177_2. 

[13] F. Alharbi and G. S. Kashyap, “Empowering Network Security 
through Advanced Analysis of Malware Samples: Leveraging 
System Metrics and Network Log Data for Informed Decision-
Making,” Int. J. Networked Distrib. Comput., pp. 1–15, Jun. 2024, 
doi: 10.1007/s44227-024-00032-1. 

[14] G. S. Kashyap, D. Mahajan, O. C. Phukan, A. Kumar, A. E. I. 
Brownlee, and J. Gao, “From Simulations to Reality: Enhancing 
Multi-Robot Exploration for Urban Search and Rescue,” Nov. 2023, 
Accessed: Dec. 03, 2023. [Online]. Available: 
https://arxiv.org/abs/2311.16958v1 

[15] M. Kanojia, P. Kamani, G. S. Kashyap, S. Naz, S. Wazir, and A. 
Chauhan, “Alternative Agriculture Land-Use Transformation 
Pathways by Partial-Equilibrium Agricultural Sector Model: A 
Mathematical Approach,” Aug. 2023, Accessed: Sep. 16, 2023. 
[Online]. Available: https://arxiv.org/abs/2308.11632v1 

[16] F. Alharbi, G. S. Kashyap, and B. A. Allehyani, “Automated Ruleset 
Generation for ‘HTTPS Everywhere’: Challenges, Implementation, 
and Insights,” Int. J. Inf. Secur. Priv., vol. 18, no. 1, pp. 1–14, Jan. 
2024, doi: 10.4018/IJISP.347330. 

[17] P. Kaur, G. S. Kashyap, A. Kumar, M. T. Nafis, S. Kumar, and V. 
Shokeen, “From Text to Transformation: A Comprehensive Review 
of Large Language Models’ Versatility,” Feb. 2024, Accessed: Mar. 
21, 2024. [Online]. Available: https://arxiv.org/abs/2402.16142v1 

[18] H. Habib, G. S. Kashyap, N. Tabassum, and T. Nafis, “Stock Price 
Prediction Using Artificial Intelligence Based on LSTM– Deep 
Learning Model,” in Artificial Intelligence & Blockchain in Cyber 
Physical Systems: Technologies & Applications, CRC Press, 2023, 
pp. 93–99. doi: 10.1201/9781003190301-6. 

[19] S. Wazir, G. S. Kashyap, and P. Saxena, “MLOps: A Review,” Aug. 
2023, Accessed: Sep. 16, 2023. [Online]. Available: 
https://arxiv.org/abs/2308.10908v1 

[20] G. S. Kashyap, A. Siddiqui, R. Siddiqui, K. Malik, S. Wazir, and A. 
E. I. Brownlee, “Prediction of Suicidal Risk Using Machine Learning 
Models,” Dec. 25, 2021. Accessed: Feb. 04, 2024. [Online]. 
Available: https://papers.ssrn.com/abstract=4709789 

[21] G. S. Kashyap, A. E. I. Brownlee, O. C. Phukan, K. Malik, and S. 
Wazir, “Roulette-Wheel Selection-Based PSO Algorithm for Solving 
the Vehicle Routing Problem with Time Windows,” Jun. 2023, 
Accessed: Jul. 04, 2023. [Online]. Available: 
https://arxiv.org/abs/2306.02308v1 

[22] M. T. Shaban, C. Baur, N. Navab, and S. Albarqouni, “Staingan: 
Stain style transfer for digital histological images,” in Proceedings - 
International Symposium on Biomedical Imaging, IEEE Computer 
Society, Apr. 2019, pp. 953–956. doi: 10.1109/ISBI.2019.8759152. 

[23] M. Diqi, M. E. Hiswati, and A. S. Nur, “StockGAN: robust stock 
price prediction using GAN algorithm,” Int. J. Inf. Technol., vol. 14, 

no. 5, pp. 2309–2315, Aug. 2022, doi: 10.1007/s41870-022-00929-6. 
[24] B. Bhattarai, S. Baek, R. Bodur, and T. K. Kim, “Sampling strategies 

for gan synthetic data,” in ICASSP, IEEE International Conference 
on Acoustics, Speech and Signal Processing - Proceedings, Institute 
of Electrical and Electronics Engineers Inc., May 2020, pp. 2303–
2307. doi: 10.1109/ICASSP40776.2020.9054677. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


