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With the widespread adoption of advanced generative models such as Gemini and GPT, there has been a notable increase in the
incorporation of such models into sociotechnical systems, categorized under AI-as-a-Service (AIaaS). Despite their versatility across
diverse sectors, concerns persist regarding discriminatory tendencies within these models, particularly favoring selected ‘majority’
demographics across various sociodemographic dimensions. Despite widespread calls for diversification of media representations,
marginalized racial and ethnic groups continue to face persistent distortion, stereotyping, and neglect within the AIaaS context. In this
work, we provide a critical summary of the state of research in the context of social harms to lead the conversation to focus on their
implications. We also present open-ended research questions, guided by our discussion, to help define future research pathways.

CCS Concepts: • Human-centered computing→ Collaborative content creation; HCI theory, concepts and models; User
interface toolkits.
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1 INTRODUCTION

After Google released its Generative AI service Gemini in February 2024 and faced a whirlwind few days of users
finding the model “refused to create images of White people" [32], culminating in Google’s decision to temporarily
disallow the generation of human images by Gemini just a few days after release. In particular, the model’s response to
the prompt ‘a portrait of a Founding Father of America’ showing images perceived as Black, Asian, or Indigenous men
[25] drew the ire of social media users, with notable mentions of X CEO Elon Musk and pscyhologist/YouTuber Jordan
Peterson, and cast allegations of Google injecting “a pro-diversity bias." [13]. Such images, from the viral X (previously
Twitter) post by @EndWokeness1, are shown in Figure 1.

Fig. 1. Example of image generated by @EndWokeness using Gemini to depict pro-diversity bias.
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This incident has brought sharply into public focus an issue researchers of generative AI services have been reckoning
with for a while now – that of (mis)representation of human identities by generative AI services such as Gemini,
ChatGPT, Stable Diffusion and many others, and the myriad biases and harms embedded within them. While the
developers and companies behind such models have highlighted their efforts to enhance diversity within their results,
recent studies [e.g., [9, 20, 26, 33, 42, 43]] have revealed how such services, trained on extensive datasets, often reinforce
stereotypes by generating outputs (both text and images) that align with societal norms, running counter to the moral
panic [10] that these systems are actually biased against traditionally privileged populations. In this paper, we revisit
the sociotechnical implications of the proliferation of generative AI services into various downstream tasks, shifting
the discourse towards re-examining the still-existing misrepresentation of various demographic groups through using
the much needed lens of harms caused by such misrepresentations.

As generative systems proliferate in commercial domains as sociotechnical systems [30], there arises a pressing need
to delineate and mitigate potential social biases embedded within them to preclude discriminatory outcomes. Assessing
these biases is further complicated by the synthetic nature of the generated content. Conventional metrics of diversity,
anchored in real-world categories such as gender and ethnicity, encounter limitations when applied to the artificial
personas crafted by generative systems [4, 38]. This disparity complicates the assessment of bias and diversity within
their outputs using traditional methodologies.

This necessitates a shift towards examining the implications of these models through the lens of harm. In AI, group
biases generally refer to variations in model performance across social groups in same or similar conditions [11].
However, limited research has explored the broader societal ramifications or negative consequences of these biases [15].
It is important to recognize that biases can serve both positive and harmful purposes [5]. There are significant insights
to gain by prioritizing understanding the harmful aspects of biases in order to comprehensively grasp their impact
and subsequently develop strategies for mitigating these harms. In the course of our work, we will delve into specific
examples to demonstrate how this framework can yield enhanced insights into the impacts of generative models.

2 CURRENT STATE OF BIASES IN GENERATIVE AI MODELS

Generative language models have morphed into a pivotal component of the AI-as-a-Service (AIaaS) solution, functioning
within intricate sociotechnical frameworks. Their integration spans diverse sectors, including education [34], healthcare
[24, 44], and advertising [21], marking a global adoption of their utility adhering to not just English-speaking or the
Western community. However, recent research has highlighted the inadequacy of these technical solutions in compre-
hensively addressing the social dimensions inherent to these models [39]. Concerns such as bias [3], misinformation
[43], and the exacerbation of societal disparities have surfaced [14, 19, 29, 41], prompting critical scrutiny of their
broader implications.

In the domain of issues within generative AI services, a recurring theme surfaces – the pervasive influence of a
‘western gaze’ that skews the outcomes towards the experiences of a select few rather than representing the diverse
many [30, 37]. These models often construct outputs based on a narrow set of shared experiences, perpetuating an ‘us

vs. them’ narrative which marginalizes the experiences of ‘them’ [3, 6]. As these models extend their reach globally, this
dichotomy of majority versus minority fails to capture the nuanced social dynamics in regions like the Global South
[31, 35]. Such misalignments exacerbate preexisting societal divisions by restricting access to those with whom the
models’ ‘learned beliefs’ resonate [23]. This is also seen with the learned ethical and moral beliefs of models where it
adheres to western and English speaking society [35].
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The implications of this misalignment thus demand deeper scrutiny, mainly through the lens of these specific
communities whose voices may be marginalized or misrepresented. Yet, investigations into the ethical dimensions
of generative AI frequently center around a Western and US-centric perspective, relying on Western frameworks of
ethics and fairness [12, 37, 40]. Such an approach, exemplified in recent debates surrounding Gemini, overlooks the
complexities of fairness and discrimination perceived in different cultural contexts and legal jurisdictions.

3 A USECASE OF HARMS IN GENERATIVE MODELS

In alignment with ethical consideration within generative AI, particularly concerning alignment and the comprehension
of harms [36], leads us to explore a potential lens to understand culutral harm and its ramifications better – allocated
and representational harm. This framework, initially developed by Blodgett et al. [5], has garnered significant attention
in NLP. Building upon this foundation, Dev et al. [15] have meticulously crafted five distinct categories encapsulating
model-based harm: stereotyping, erasure, quality of service, dehumanization, and disparagement.

Fig. 2. Image generated by Imagen 2 for the prompt: ‘An upper class family’

By leveraging this framework, we can dissect the manifestations of bias within generative AI. To illustrate this, we
turn to a practical example using Imagen 2, a freely accessible image generation model developed by Google 2. When
prompted with the phrase ‘An upper class family,’ the model generates a set of images depicting affluent individuals,
seemingly Western and white, posed as if for a photograph (see Fig. 2). While these images may conform to social norms
in certain contexts, they inadequately represent the diversity of familial structures worldwide. The generated image
underscores the inherent nature of stereotyping, wherein generalized beliefs about individuals’ personal attributes are
formed based on their socio and demographic characteristics.

The example becomes intriguing when we alter the prompt to generate images of other socioeconomic classes: ‘a
middle-class family’ or ‘a working-class family.’ Surprisingly, the model responds with the message stating, ‘That prompt

goes against our Policies. Try another prompt,’ failing to generate any images at all. This response serves as a stark
example of both quality of service, where the model fails to perform equitably across different socioeconomic groups,
and erasure, whereby certain social groups are inadequately represented or completely omitted without explanation.

Moreover, when demographic terms like ‘an upper-class Asian family’ or ‘an upper-class South American family’, for
the same economic group, are added to the prompt, the model’s irrational unresponsiveness persists, further illustrating
tendencies toward erasure and potential applications of disparagement– the notion that certain groups are less valued
or deserving of respect. This behavior also hints at the presence of dehumanization, which seeks to marginalize
certain groups by categorizing them as ’others’ and erasing signs of their shared humanity.

2https://deepmind.google/technologies/imagen-2/
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The example provided hence underscores the nuanced ways in which bias can manifest within GAI systems, into
harms, highlighting the importance of critically evaluating their outputs and addressing ethical concerns surrounding
representation and fairness beyond the scales used through a western gaze [12, 27, 31]. We scope our focus here to
text-to-image services, though our use case can easily be extended to text-to-text or text-to-video services as well.

4 ETHICAL (RE)DESIGN OF GENERATIVE MODELS: OPEN QUESTIONS AND FUTURE DIRECTIONS

We advocate for a community and human-centered approach towards such systems which considers the ethical
implications of systems before/during the development process, rather than after deployment [17]. This approach also
centers the fact that ML models within generative AI services are not value-neutral and take positions [8], and advocate
for the explicit determination of model positionality [7] that accompanies and contextualizes the outputs generated.

Furthermore, we call for a power-aware approach, rooted in an understanding that de-biasing or bias mitigation
approaches are infeasible and too technical a solution to a problem that is sociotechnical, and that a more productive
approach is to study the power asymmetries embedded within the choices made in the development process [28]. This
approach can adopt a data feminist [16] lens of questioning the development process, demanding stronger transparency
about whose voices and identities were centered within the process, and which identities were left out. Furthermore, we
advocate for stronger transparency around the decisions made within the development process, particularly around
training data. We advocate for models being published with detailed documentation of the datasets they were trained
upon, following data sheet recommendations of Bender and Friedman [2], Gebru et al. [18].

We conclude with some open questions for the research community, towards community-centric development:

(1) How can we investigate specific biases within models and build cause-and-effect relationships between them and
decisions made within model development processes?

(2) What novel types of harms can generative AI systems cause, beyond those documented by Dev et al. [15]?
(3) How can we hold accountable developers of models and generative AI services that cause harm?
(4) How can we compute annotator fingerprint/ model positionality [7] for models trained by thousands of annotators?

These questions and points discussed within this paper are scoped for generative AI services as a whole as models
like ChatGPT have also been known to be similarly biased [e.g., 1, 19, 22] and can benefit from being (re)designed. We
hope this paper catalyzes a generative (pardon the pun) conversation within the community and contributes towards
setting the agenda for the future of generative AI research within the research community.

5 CONCLUSION

While we see strong promise of socio-technical abilities within the generative AI systems, this work brings to focus
the critical nature of evaluation of ethical considerations. As generative models rapidly evolve and multiply, driven
by intense competition among various companies, the research community must persist in advocating for ethical
approaches to redesigning current systems or creating new ones. Only through such comprehensive exploration can
we hope to address the inherent biases and ethical challenges embedded within these powerful technological systems.
Discerning answers to the questions, presented above, within co-creative systems and bias mitigation approaches
appears to be the way forward for these systems.
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