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The proliferation of photo sharing on Online Social Media (OSM) has vastly increased the risk of privacy violations. This work
investigates Large Language Model’s (LLM), specifically ChatGPT’s, proficiency in identifying and explaining privacy violations
within photos. Using a dataset of 68 images encompassing common privacy-sensitive scenarios, we tasked three different models of
ChatGPT to rate these images on their extent of privacy violation. These ratings were then compared to those made by humans. Our
findings indicate that ChatGPT is effective in detecting privacy violations, with better performance when using fine-tuned models
trained with expert privacy data. Further research in this topic can contribute to the development of automated tools to enhance
privacy protections in this era of rampant photo sharing.

CCS Concepts: • Security and privacy → Social aspects of security and privacy; Privacy protections; Usability in security and

privacy; • Computing methodologies→ Scene understanding; Visual inspection; Natural language generation.

1 INTRODUCTION

The proliferation of photo sharing on online social media platforms has given rise to critical privacy concerns [21].
Countless photos are uploaded every day, many of which may contain sensitive or personal information, inadvertently
exposing individuals to privacy violations ranging from minor embarrassments to serious security risks [15]. The
increased volume of digital content has made it impractical for human moderators to effectively monitor and identify
potential privacy issues in shared photos [8]. Herein lies the potential of artificial intelligence, particularly large language
models (LLMs), in automating the detection of privacy-sensitive content in complex media. Such systems could not only
assist with flagging potentially problematic images but also in educating users about privacy concerns related to their
shared content. Recently, Amon et al. [4] explored the privacy perceptions of people in the context of meme sharing
and Li et al. [15] identified a taxonomy of privacy violations present in photos shared online. Utilizing the dataset from
Amon et al. and informed by Li et al.’s taxonomy, our research aims to explore this possibility of utilizing LLMs to offer
users real-time suggestions to mitigate privacy risks in the context of photo sharing.Our work investigates ChatGPT’s
ability to discern sensitive content in images. Specifically we explore the following research questions: (R1) How well
does ChatGPT detect privacy violations in photos?; (R2) How does ChatGPT reason about privacy violations in photos?
Our findings provide a deeper understanding of ChatGPT’s capabilities in identifying privacy-sensitive content within
photos in the context of online photo sharing.

2 METHODOLOGY

2.1 Experimental Design

We conducted an experimental study of ChatGPT 4.0, which was selected due to its unique photo analysis capabilities.
The three Models we analyzed were: (1) Base Model of ChatGPT (Base Model); (2)Base Model of ChatGPT prompted
with a definition of sensitive content from prior literature [15] (Taxonomy Prompt Model); and (3) Fine-tuned ChatGPT
model, specifically trained on photo sharing and privacy research literature (Fine-tuned Model).
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2.2 Data Collection

Our photo dataset consisted of 68 “meme” photos [4], each of which had been previously ascribed an average privacy
rating derived form ratings, categorized provided by 245 human raters. These ratings were originally on a 1-5 scale; we
categorized these ratings into three categories (tertiles) based on percentile: high, medium, and low. Every photo in the
dataset was presented to each of the three models, which would then be prompted to assess each photo’s potential for
privacy concern. For the Base Model and Fine-Tuned Model, the prompt was: “Give this image a score of low, medium,
or high in regard to the potential for a privacy violation, and explain why in a single paragraph." For the Taxonomy
Prompt Model, the prompt was: “Based on the definition of sensitive content provided, give this image a score of low,
medium, or high in regard to the potential for a privacy violation, and explain why in a single paragraph."

2.3 Qualitative Analysis Techniques

To answer our second research question about how ChatGPT reasons about privacy sensitive content within photos, we
compared the occurrences of specific words in the outputs of the Base Model and Fine-tuned Model, targeting words
central to privacy, data protection, and ethical issues. We selected words appearing at least 10 times in the outputs and,
using the Porter stemming algorithm [20], concentrated on a curated list of 20 relevant word stems. The occurrence
rate of each word stem was calculated by dividing its total occurrences by total number of word occurrences (excluding
stop words) in a model’s output. This process, focused on key word stems, enabled a direct comparison between the
Baseline Model and the Fine-tuned Model in terms of concepts used to explain privacy concerns in photos.

2.4 Search Criteria Establishment for Training Fine-tuned Model

We fine-tuned the base model by creating a custom version of ChatGPT 4.0 where we specified how it should behave
based on the papers selected below. (1) Keyword Selection and Search Strategy: To find papers that could be used to train
the Fine-tuned Model, the term “photo privacy” was used to query Google Scholar. The scope of the search was limited
to the first 10 pages of results, among which the top five most cited papers [1, 5, 13, 17, 18] were selected, based on the
assumption that higher citation counts correlate with greater academic impact. As a secondary search strategy, results
were sorted by the recency of publication. The time frame of this search was confined to papers published from 2019 to
the present, with a preference toward more recent scholarly contributions. The search was restricted to the first 10
pages of results, and the five most recent and cited papers [12, 14, 16, 22, 23] were chosen in order to capture the recent
and significant developments. (2) Supplementary literature: Although we plan a more extensive selection of research
papers from a wide array of experts in the future, we faced practical limits on the number of papers the model would
accept. For this work, we chose to focus on ten papers from our research group [2, 3, 6, 7, 9–11, 19, 21] on this topic.

3 RESULTS

3.1 Quantitative Analysis

The quantitative analysis involved calculating the percent match between ChatGPT’s privacy violation ratings and those
provided by 245 human raters, as shown in Table 1. This involved comparing ChatGPT’s response (low, medium, high)
for each photo with the human rating along with quantifying the degree of agreement. For instances where ChatGPT’s
ratings did not match with the human ratings, the analysis further categorized whether ChatGPT overestimated or
underestimated the privacy risk. This comparison provided insight into the model’s tendency toward caution or leniency
in privacy assessment. Given the three categories of ratings, a baseline of 33.33% match rate represents random guessing.
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Analysis shows that all three models overestimated privacy risks, with the Fine-tuned Model outperforming the others in
match rate accuracy, with second highest overestimation rate. This suggests that the incorporation of expert knowledge
can only somewhat enhance the model’s ability to interpret privacy concerns in a manner akin to human understanding.

Base Model Taxonomy Prompt Model Fine-tuned Model
Match rate 51.47% 54.41% 58.82%

Overestimation rate 81.82% 74.19% 78.57%
Table 1. ChatGPT vs. Human Raters Privacy Ratings - Percent Match and Over/Underestimation Analysis1

Base Model Taxonomy Prompt Model Fine-tuned Model
Precision Recall Precision Recall Precision Recall

High 55.55% 86.96% 61.76% 91.30% 71.43% 86.96%
Medium 35.00% 31.83% 33.33% 27.27% 42.86% 54.55%
Low 66.66% 34.78% 62.50% 43.48% 66.67% 34.78%

Table 2. Precision and Recall - Separated by Models and Rating Category

To better understand the overestimation, we examined the precision and recall for the three categories (low, medium,
high). As seen in Table 2, the Base Model performs poorly (or close to random) for the medium category, with stronger
recall of the high category, and has poor recall of the low category. The Taxonomy Prompt Model improves this situation
a little, and the Fine-tuned Model greatly improves precision for the high category. We note that recall remains poor for
the low category, but the performance for differentiating between the high and low categories are improved.
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Fig. 1. Comparative Histogram of ChatGPT’s Privacy Violation Terms: Base Model vs. Fine-Tuned Model

1Baseline: 33.33%
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3.2 Qualitative Analysis

Figure 1 illustrates the differences in ChatGPT’s interpretation of privacy violations between the Base Model and the
Fine-tuned Model, highlighting the Fine-Tuned model’s increased emphasis on privacy and data protection terms, such
as "ident", "inform", "person", "share", "context". This comparison visualizes the distinct assessment tendencies of each
model regarding privacy violations. On the other hand, the stability in occurrences of stems such as "woman", "reput",
and "humor’ across both models points to consistent thematic treatment across the dataset.

4 DISCUSSION

A critical observation across all model versions was the tendency to overestimate privacy risks. This overestimation
raises important questions about risks of excessive censorship or misinterpretation. Furthermore, thematic shifts
observed between the Base model and the Fine-tuned Model suggest significant implications for the application of
language models in privacy risk evaluation. These trends suggest that the Fine-tuned Model could be more adept at
preemptively identifying privacy violations in online content, particularly on social media. Fine-tuning of LLMs in
emphasizing privacy-related terms demonstrates the potential for automation of privacy risk assessment.

5 LIMITATIONS

One notable limitation to our experimental design is how we translated the human privacy ratings to low, medium and
high. Average human privacy ratings are continuous values whereas GPT ratings are discrete. Another limitation is
possible inaccuracy in the human privacy ratings. The privacy ratings data was collected from regular social media
users who may not know what constitutes as a privacy violation. Also, participants are located in the US and may not
be a general representative sample. The Taxonomy Prompt Model and Fine-tuned Model were trained with privacy
research written by privacy experts. Future work could collect human privacy ratings from a panel of experts for
comparison with fine-tuned LLM models. Experiments in this work were conducted using ChatGPT 4. Note that as
OpenAI continuously updates its models, these experiments may not be replicable.

6 CONCLUSIONS

In this work, we examined ChatGPT’s effectiveness in identifying privacy violations in digital images as compared
to human judgement. Although ChatGPT was reasonably proficient, models trained with expert privacy data had
higher performance rates, indicating that optimizing ChatGPT’s capabilities involves training the model with a clear
understanding of what constitutes a privacy violation. At the same time, in cases where ChatGPT’s output did not match
the human ratings, it tended to overestimate the degree of violation, posing a risk of excessive censorship, especially
with increased fine tuning. When looking at ChatGPT’s reasoning for its ratings, we observe a tendency in the trained
model to place more emphasis on words related to potential sharing of identifiable information. Although our work
focused on ChatGPT 4, our findings support the utility of LLMs in automating privacy violations detection.
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